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Economists such as Fisher (1933), Keynes (1936), and Minsky (1986) have at-
tributed the economic downturn of the Great Depression to the failure of financial
markets. Kindleberger (1993) documents that financial crises are common in his-
tory. The current financial crisis has underscored once again the importance of
the financial frictions for the business cycles. These facts raise questions about
financial stability. How resilient is the financial system to various shocks? At
what point does the system enter a crisis regime, in the sense that market volatil-
ity, credit spreads, and financing activity change drastically? To what extent is
risk exogenous, and to what extent is it generated by the interactions within the
system? How does one quantify systemic risk? Does financial innovation really
destabilize the financial system? How does the system respond to various policies,
and how do policies affect spillovers and welfare?

The seminal contributions of Bernanke and Gertler (1989), Kiyotaki and Moore
(1997) (hereafter KM), and Bernanke, Gertler and Gilchrist (1999) (hereafter
BGG) uncover several important channels through which financial frictions affect
the macroeconomy. First, temporary shocks can have persistent effects on eco-
nomic activity as they affect the net worth of levered agents. Net worth takes
time to rebuild. Second, financial frictions lead to the amplification of shocks,
directly through leverage and indirectly through prices. Thus, small shocks can
have potentially large effects on the economy. The amplification through prices
works through adverse feedback loops, as declining net worth of levered agents
leads to a drop in prices of assets concentrated in their hands, further lowering
these agents’ net worth.

Both BGG and KM consider the amplification and propagation of small shocks
that hit the system at its deterministic steady state, and focus on linear approx-
imations of system dynamics. We build upon the work of BGG and KM, but
our work differs in important ways. We do not assume that after a shock the
economy drifts back to the steady state, and instead we allow the length of the
slump to be uncertain. We solve for full dynamics of the model using continuous-
time methodology and find a sharp distinction between normal times and crisis
episodes. We then focus on measures such as the length, severity, and frequency
of crises.

As in BGG and KM, the core of our model has two types of agents: produc-
tive experts and less productive households. Because of financial frictions, the
wealth of experts is important for their ability to buy physical capital and use
it productively. The evolution of the wealth distribution depends on the agent’s
consumption decisions, as well as macro shocks that affect the agents’ balance
sheets. Physical capital can be traded in markets, and its equilibrium price is
determined endogenously by the agents’ wealth constraints. Unlike in BGG and
KM, agents in our model rationally anticipate shocks. In normal times, the sys-
tem is near the stochastic steady state: a point at which agents reach their target
leverage. The stochastic steady state is defined as the balance point, to which
the system tends to return after it is hit by small shocks. At this point, experts
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can absorb loss-inducing adverse shocks if they have sufficient time to rebuild net
worth before the following shock arrives.

The most important phenomena occur when the system is knocked off balance
sufficiently far away from the steady state. The full characterization of system
dynamics allows us to derive a number of important implications.

First, the system’s reaction to shocks is highly nonlinear. While the system is
resilient to most shocks near the steady state, unusually large shocks are strongly
amplified. Once in a crisis regime, even small shocks are subject to amplification,
leading to significant endogenous risk. At the steady state, experts can absorb
moderate shocks to their net worths easily by adjusting payouts, but away from
the steady state payouts cannot be further reduced. Hence, near the steady
state, shocks have little effect on the experts’ demand for physical capital. In
the crisis states away from the steady state, experts have to sell capital to cut
their risk exposures. Overall, the stability of the system depends on the experts’
endogenous choice of capital cushions. As it is costly to retain earnings, excess
profits are paid out when experts are comfortable with their capital ratios.

Second, the system’s reaction to shocks is asymmetric. Positive shocks at the
steady state lead to larger payouts and little amplification, while large negative
shocks are amplified into crisis episodes resulting in significant inefficiencies, dis-
investment, and slow recovery.

Third, endogenous risk, i.e., risk self-generated by the system, dominates the
volatility dynamics and affects the experts’ precautionary motive. When changes
in asset prices are driven by the constraints of market participants rather than
fundamentals, incentives to hold cash to buy assets later at fire-sale prices in-
crease. The precautionary motive leads to price drops in anticipation of the crisis
and to higher expected return in times of increased endogenous risk.

Fourth, our model addresses the Kocherlakota (2000) critique that amplification
effects in BGG and KM are quantitatively not large enough to explain the data.
Unlike in BGG and KM, the extent and length of slumps is stochastic in our
model, which significantly increases the amplification and persistence of adverse
shocks.

Fifth, after moving through a high-volatility region, the system can get trapped
for some time in a recession with low growth and misallocation of resources. The
stationary distribution is ∪-shaped. While the system spends most of its time
around the steady state, it also spends some time in the depressed regime with
low growth.

In addition, a number of comparative statics arise because we endogenize the
experts’ payout policy. A phenomenon, which we call the volatility paradox, arises.
Paradoxically, lower exogenous risk can lead to more extreme volatility spikes in
the crisis regime. This happens because low fundamental risk leads to higher
equilibrium leverage. In sum, whatever the exogenous risk, it is normal for the
system to sporadically enter volatile regimes away from the steady state. In fact,
our results suggest that low-risk environments are conducive to greater buildup
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of systemic risk.

Financial innovation that allows experts to hedge their idiosyncratic risk can
be self-defeating, as it leads to higher systemic risk. For example, securitization
of home loans into mortgage-backed securities allows institutions that originate
loans to unload some of the risks to other institutions. Institutions can also share
risks through contracts like credit-default swaps, through integration of com-
mercial banks and investment banks, and through more complex intermediation
chains (e.g., see Shin (2010)). We find in our model that, when experts can hedge
idiosyncratic risks better among one another, they take on more leverage. This
makes the system less stable. Thus, while securitization is ostensibly quite ben-
eficial, reducing costs of idiosyncratic shocks and shrinking interest rate spreads,
it unintentionally leads to amplified systemic risks in equilibrium.

When intermediaries facilitate lending from households to experts, our results
continue to hold. In this case, system dynamics depend on the net worth of
both intermediaries and end borrowers. As in the models of Diamond (1984)
and Holmström and Tirole (1997) the role of the intermediaries is to monitor
end borrowers. In this process, intermediaries become exposed to macroeconomic
risks.

Our model implies important lessons for financial regulation when financial
crises lead to spillovers into the real economy. Obviously, regulation is subject
to time inconsistency. For example, policies intended to ex-post recapitalize the
financial sector in crisis times can lead to moral hazard in normal times. In
addition, even prophylactic well-intentioned policies can have unintended conse-
quences. For example, capital requirements, if set improperly, can easily harm
welfare, as they may bind in downturns but have little effect on leverage in good
times. That is, in good times, the fear of hitting a capital constraint in the
future may be too weak to induce experts to build sufficient net worth buffers
to overturn the destabilizing effects in downturns. Overall, our model argues in
favor of countercyclical regulation that encourages financial institutions to retain
earnings and build up capital buffers in good times and that relaxes constraints
in downturns.

Our model makes a strong case in favor of macro-prudential regulation. For ex-
ample, regulation that restricts payouts (such as dividends and bonus payments)
should depend primarily on aggregate net worth of all intermediaries. That is,
even if some of the intermediaries are well capitalized, allowing them to pay out
dividends can destabilize the system if others are undercapitalized.

Literature Review

This paper builds upon several strands of literature. At the firm level, the
microfoundations of financial frictions lie in papers on capital structure in the
presence of informational and agency frictions, as well as papers on financial
intermediation and bank runs. In the aggregate, the relevant papers study the



4 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

effects of prices and collateral values, considering financial frictions in a general
equilibrium context.

On the firm level, papers such as Townsend (1979), Bolton and Scharfstein
(1990), and DeMarzo and Sannikov (2006) explain why violations of Modigliani-
Miller assumptions lead to bounds on the agents’ borrowing capacity, as well as
restrictions on risk sharing. Sannikov (2012) provides a survey of capital structure
implications of financial frictions. It follows that, in the aggregate, the wealth
distribution among agents matters for the allocation of productive resources. In
Scheinkman and Weiss (1986), the wealth distribution between two agents matters
for overall economic activity. Diamond (1984) and Holmström and Tirole (1997)
emphasize the monitoring role that intermediaries perform as they channel funds
from lenders to borrowers. In Diamond and Dybvig (1983) and Allen and Gale
(2007), intermediaries are subject to runs. He and Xiong (2012) model runs on
nonfinancial firms, and Shleifer and Vishny (2010) focus on bank stability and
investor sentiment. These observations microfound the balance sheet assumptions
made in our paper and in the literature that studies financial frictions in the
macroeconomy.1

In the aggregate, a number of papers also build on the idea that adverse price
movements affect the borrowers’ net worth and thus financial constraints. Shleifer
and Vishny (1992) emphasize the importance of the liquidating price of capital,
determined at the time when natural buyers are constrained. Shleifer and Vishny
(1997) stress that insolvency risk restricts the fund managers’ ability to trade
against mispricing. In Geanakoplos (1997, 2003), the identity of the marginal
buyer affects prices. Brunnermeier and Pedersen (2009) focus on margin con-
straints that depend on volatility, and Rampini and Viswanathan (2010) stress
that highly productive firms go closer to their debt capacity and hence are hit
harder in a downturn.

Important papers that analyze financial frictions in infinite-horizon macro set-
tings include KM, Carlstrom and Fuerst (1997), and BGG. These papers make use
of log-linear approximations to study how financial frictions amplify shocks near
the steady state of the system. Other papers, such as Christiano, Eichenbaum
and Evans (2005), Christiano, Motto and Rostagno (2003, 2007), Curdia and
Woodford (2010), Gertler and Karadi (2011), and Gertler and Kiyotaki (2011),
use these techniques to study related questions, including the impact of monetary
policy on financial frictions. See Brunnermeier, Eisenbach and Sannikov (2012)
for a survey of literature on economies with financial frictions.

Several papers study nonlinear effects in economies with occasionally binding
constraints. In these papers, agents save away from the constraint, but nonlinear-
ities arise near the constraint. Notably, Mendoza and Smith (2006) and Mendoza

1In our model, for financial frictions to have macroeconomic impact, it is crucial that financial experts
cannot hedge at least some of aggregate risks with other agents. Otherwise, macroeconomic effects would
go away. In practice, for many reasons it is difficult to identify and hedge all aggregate risks, and as
the recent work of Di Tella (2012) shows, there are forms of aggregate risk that financially constrained
agents choose to leave unhedged.
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(2010) study discrete-time economies, in which domestic workers are constrained
with respect to the fraction of equity they can sell to foreigners, as well as the
amount they can borrow. Foreigners face holding costs and trading costs with
respect to domestic equity, so both domestic wealth and foreign holdings of do-
mestic equity affect system dynamics. Near the constraint, domestic workers try
to sell equity to foreigners first and then sharply reduce consumption to pay off
debt. Prices are very sensitive to shocks in the “sudden stop” region near the
constraint. Generally, domestic agents will accumulate savings away from the
constraint, placing the economy in the region where prices are not sensitive to
shocks.

Like our paper, He and Krishnamurthy (2012, 2013) (hereafter HK) use continuous-
time methodology to sharply characterize nonlinearities of models with occasion-
ally binding constraints. In their endowment economy, financial experts face
equity issuance constraints. Risk premia are determined by aggregate risk aver-
sion when the outside equity constraint is slack, but they rise sharply when the
constraint binds. He and Krishnamurthy (2012) calibrate a variant of the model
and show that, in crisis, equity injection is a superior policy compared to interest
rate cuts or asset-purchasing programs by the central bank.

While those papers and our paper share a common theme of financially con-
strained agents, there are important differences. First, we prove analytically a
sharp result about nonlinearity, as amplification is completely absent near the
steady state of our economy but becomes large away from it. Second, our model
exhibits slow recovery from states where assets are misallocated to less productive
uses, owing to financial constraints. HK and Mendoza and Smith (2006) do not
study asset misallocation, focusing instead on a single aggregate production func-
tion. The system recovers much faster in HK, where risk premia can rise without
a bound in crises. Third, we introduce the volatility paradox: the idea that the
system is prone to crises even if exogenous risk is low. Fourth, we demonstrate
how financial innovation can make the system less stable. Fifth, while HK focus
on stabilization policies in crisis, we study prophylactic policies and their affect
on overall system stability. Also, Mendoza (2010) ambitiously builds a complex
model for quantitative calibration, while we opt to clearly work out the economic
mechanisms on a simple model, making use of the continuous-time methods.

Several papers identify important externalities that exist because of financial
frictions. These include Bhattacharya and Gale (1987), in which externalities arise
in the interbank market; Gromb and Vayanos (2002), who provide welfare analysis
for a setting with credit constraints; and Caballero and Krishnamurthy (2004),
who study externalities an international open economy framework. On a more
abstract level these effects can be traced back to the inefficiency results in general
equilibrium with incomplete markets, see e.g., Stiglitz (1982) and Geanakoplos
and Polemarchakis (1986). Lorenzoni (2008) and Jeanne and Korinek (2010)
focus on funding constraints that depend on prices. Adrian and Brunnermeier
(2010) provide a systemic risk measure and argue that financial regulation should
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focus on externalities.
Our paper is organized as follows. We set up our baseline model in Section I.

In Section II we develop a methodology to solve the model, characterize the
equilibrium that is Markov in the experts’ aggregate net worth, and present a
computed example. Section III discusses equilibrium dynamics and properties of
asset prices. Section IV describes the volatility paradox and discusses asset liq-
uidity and the Kocherlakota critique. Section V analyzes the effects of borrowing
costs and financial innovations. Section VI discusses efficiency and regulation.
Section VII concludes.

I. The Baseline Model

In an economy without financial frictions and with complete markets, the flow of
funds to the most productive agents is unconstrained, and hence the distribution
of wealth is irrelevant. With frictions, the wealth distribution may change with
macro shocks and affect aggregate productivity. When the net worth of productive
agents becomes depressed, the allocation of resources (such as capital) in the
economy becomes less efficient and asset prices may decline.

In this section we develop a simple baseline model with two types of agents,
in which productive agents, experts, can finance their projects only by issuing
risk-free debt. This capital structure simplifies exposition, but it is not crucial
for our results. As long as frictions restrict risk-sharing, aggregate shocks affect
the wealth distribution across agents and thus asset prices and allocations. In
Appendix A.A1, we examine other capital structures, link them to underlying
agency problems, and generalize the model to include intermediaries.

Technology

We consider an economy populated by experts and households. Both types of
agents can own capital, but experts are able to manage it more productively.

We denote the aggregate amount of capital in the economy by Kt and capital
held by an individual agent by kt, where t ∈ [0,∞) is time. Physical capital kt
held by an expert produces output at rate

yt = akt,

per unit of time, where a is a parameter. Output serves as numeraire and its
price is normalized to one. New capital can be built through internal investment.
When held by an expert, capital evolves according to

(1) dkt = (Φ(ιt)− δ)kt dt+ σkt dZt,

where ιt is the investment rate per unit of capital (i.e., ιtkt is the total investment
rate) and dZt are exogenous aggregate Brownian shocks. Function Φ, which
satisfies Φ(0) = 0, Φ′(0) = 1, Φ′(·) > 0, and Φ′′(·) < 0, represents a standard
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investment technology with adjustment costs. In the absence of investment, cap-
ital managed by experts depreciates at rate δ. The concavity of Φ(ι) represents
technological illiquidity, i.e., adjustment costs of converting output to new capital
and vice versa.

Households are less productive. Capital managed by households produces out-
put of only

y
t

= a kt

with a ≤ a, and evolves according to

dkt = (Φ(ιt)− δ) kt dt+ σkt dZt,

with δ > δ, where ιt is the household investment rate per unit of capital.

The Brownian shocks dZt reflect the fact that one learns over time how “effec-
tive” the capital stock is.2 That is, the shocks dZt capture changes in expectations
about the future productivity of capital, and kt reflects the “efficiency units” of
capital, measured in expected future output rather than in simple units of physi-
cal capital (number of machines). For example, when a company reports current
earnings, it reveals not only information about current but also future expected
cash flow. In this sense our model is also linked to the literature on news-driven
business cycles, see, e.g., Jaimovich and Rebelo (2009).

Preferences

Experts and less productive households are risk neutral. Households have the
discount rate r and they may consume both positive and negative amounts. This
assumption ensures that households provide fully elastic lending at the risk-free
rate of r.3 Denote by ct the cumulative consumption of an individual household
until time t, so that dct is consumption at time t. Then the utility of a household
is given by4

E

[∫ ∞
0

e−rt dct

]
.

In contrast, experts have the discount rate ρ > r, and they cannot have negative
consumption. That is, cumulative consumption of an individual expert ct must

2Alternatively, one can also assume that the economy experiences aggregate TFP shocks at with
dat = atσdZt. Output would be yt = atκt, where capital κ is now measured in physical (instead
of efficiency) units and evolves according to dκt = (Φ(ιt/at) − δ)κtdt where ιt is investment per unit
of physical capital. Effective investment ιt/at is normalized by TFP to preserve the tractable scale
invariance properties. The fact that investment costs increase with at can be justified by the fact that
high TFP economies are more specialized.

3In an international context, one can think of a small open economy, in which foreigners finance
domestic experts at a fixed global interest rate, r.

4Note that we do not denote by c(t) the flow of consumption and write E
[∫∞

0 e−ρtc(t) dt
]
, because

consumption can be lumpy and singular and hence c(t) may be not well defined.
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be a nondecreasing process, i.e., dct ≥ 0. Expert utility is

E

[∫ ∞
0

e−ρt dct

]
.

First Best, Financial Frictions, and Capital Structure

In the economy without frictions, experts would manage capital forever. Be-
cause they are less patient than households, experts would consume their entire
net worths at time 0 and finance their future capital holdings by issuing equity to
households. The Gordon growth formula implies that the price of capital would
be

(2) q̄ = max
ι

a− ι
r − (Φ(ι)− δ)

,

so that capital earns the required return on equity, which equals the discount rate
r of risk-neutral households.

If experts cannot issue equity to households, they require positive net worth to
be able to absorb risks, since they cannot have negative consumption. If expert
wealth ever dropped to 0, then they would not be able to hold any risky capital
at all. If so, then the price of capital would permanently drop to

q = max
ι

a− ι
r − (Φ(ι)− δ)

,

the price that the households would be willing to pay if they had to hold capital
forever. The difference between the first-best price q̄ and the liquidation value
q determines the market illiquidity of capital, which plays an important role in
equilibrium.

A constraint on expert equity issuance can be justified in many ways, e.g.,
through the existence of an agency problem between the experts and households.
There is an extensive literature in corporate finance that argues that firm insid-
ers must have some “skin in the game” to align their incentives with those of
the outside equity holders.5 Typically, agency models imply that the expert’s
incentives and effort increase along with the equity stake. The incentives peak
when the expert owns the entire equity stake and borrows from outside investors
exclusively through risk-free debt.

While agency models place a restriction on the risk that expert net worth must
absorb, they imply nothing about how the remaining cash flows are divided among
outside investors. That is, the Modigliani-Miller theorem holds with respect to
those cash flows. They can be divided among various securities, including risk-
free debt, risky debt, equity, and hybrid securities. The choice of the securities
has no effect on firm value and equilibrium. Moreover, because the assumptions

5See Jensen and Meckling (1976), Bolton and Scharfstein (1990), and DeMarzo and Sannikov (2006).
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of Harrison and Kreps (1979) hold in our setting, there exists an analytically con-
venient capital structure, in which outsiders hold only equity and risk-free debt.
Indeed, any other security can be perfectly replicated by continuous trading of
equity and risk-free debt. More generally, an equivalent capital structure involv-
ing risky long-term debt provides an important framework for studying default
in our setting. We propose an agency model and analyze its capital structure
implications in Appendix A.A1.

For now, we focus on the simplest assumption that delivers the main results of
this paper: experts must retain 100% of their equity and can issue only risk-free
debt. If the net worth of an expert ever reaches zero, he cannot absorb any more
risk, so he liquidates his assets and gets the utility of zero from then on.

Market for Capital

Individual experts and households can trade physical capital in a fully liquid
market. We denote the equilibrium market price of capital in terms of output by
qt and postulate that its law of motion is of the form

(3) dqt = µqt qt dt+ σqt qt dZt.

That is, capital kt is worth qtkt. In equilibrium qt is determined endogenously,
and it is bounded between q and q̄.

Return from Holding Capital

When an expert buys and holds kt units of capital at price qt, by Ito’s lemma
the value of this capital evolves according to6

(4)
d(ktqt)

ktqt
= (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt.

This is the experts’ capital gains rate. The total risk of this position consists
of fundamental risk due to news about the future productivity of capital σ dZt
and endogenous risk due to financial frictions in the economy, σqt dZt. Capital
also generates a dividend yield of (a− ιt)/qt from output remaining after internal
investment. Thus, the total return that experts earn from capital (per unit of
wealth invested) is

(5) drkt =
a− ιt
qt

dt︸ ︷︷ ︸
dividend yield

+ (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt.︸ ︷︷ ︸
capital gains rate

6We use Ito’s product rule. If dXt/Xt = µXt dt+ σXt dZt and dYt/Yt = µYt dt+ σYt dZt, then

d(XtYt) = Yt dXt +Xt dYt + (σXt σ
Y
t )(XtYt) dt.
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Similarly, less productive households earn the return of

(6) drkt =
a− ιt
qt

dt︸ ︷︷ ︸
dividend yield

+ (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt.︸ ︷︷ ︸
capital gains rate

Dynamic Trading and Experts’ Problem

The net worth nt of an expert who invests fraction xt of his wealth in capital,
1− xt in the risk-free asset, and consumes dct evolves according to7

(7)
dnt
nt

= xt dr
k
t + (1− xt) r dt−

dct
nt
.

We expect xt to be greater than 1, i.e., experts use leverage. Less productive
households provide fully elastic debt funding for the interest rate r < ρ to any
expert with positive net worth.8 Any expert with positive net worth can guarantee
to repay any the loan with probability one, because prices change continuously,
and individual experts are small and have no price impact.

Formally, each expert solves

max
xt≥0, dct≥0, ιt

E

[∫ ∞
0

e−ρtdct

]
,

subject to the solvency constraint nt ≥ 0,∀t and the dynamic budget constraint
(7).

We refer to dct/nt as the consumption rate of an expert. Note that whenever
two experts choose the same portfolio weights and consume wealth at the same
rate, their expected discounted payoffs will be proportional to their net worth.

Households’ Problem

Similarly, the net worth nt of any household that invests fraction xt of wealth
in capital, 1− xt in the risk-free asset, and consumes dct evolves according to

(8)
dnt
nt

= xt dr
k
t + (1− xt) r dt−

dct
nt
.

Each household solves

max
xt≥0, dct, ιt

E

[∫ ∞
0

e−rtdct

]
,

7Chapter 5 of Duffie (2010) offers an excellent overview of the mathematics of portfolio returns in
continuous time.

8In the short run, an individual expert can hold an arbitrarily large amount of capital by borrowing
through risk-free debt because prices change continuously in our model, and individual experts are small
and have no price impact.
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subject to nt ≥ 0 and the dynamic budget constraint (8). Note that household
consumption dct can be both positive and negative, unlike that of experts.

In sum, experts and households differ in three ways: First, experts are more
productive since a ≥ a and/or δ < δ. Second, experts are less patient than
households, i.e., ρ > r. Third, experts’ consumption has to be positive while
household consumption is allowed to be negative, ensuring that the risk-free rate
is always r.9

Equilibrium

Informally, an equilibrium is characterized by a map from shock histories {Zs, s ∈
[0, t]}, to prices qt and asset allocations such that, given prices, agents maximize
their expected utilities and markets clear. To define an equilibrium formally, we
denote the set of experts to be the interval I = [0, 1] and index individual experts
by i ∈ I. Similarly, we denote the set of less productive households by J = (1, 2]
with index j.

Definition For any initial endowments of capital {ki0, k
j
0; i ∈ I, j ∈ J} such that∫

I
ki0 di+

∫
J
kj0 dj = K0,

an equilibrium is described by stochastic processes on the filtered probability
space defined by the Brownian motion {Zt, t ≥ 0}: the price process of capital

{qt}, net worths {nit, n
j
t ≥ 0}, capital holdings {kit, k

j
t ≥ 0}, investment decisions

{ιit, ι
j
t ∈ R}, and consumption choices {dcit ≥ 0, dcjt} of individual agents i ∈ I,

j ∈ J; such that

(i) initial net worths satisfy ni0 = ki0q0 and nj0 = kj0q0, for i ∈ I and j ∈ J,

(ii) each expert i ∈ I and each household j ∈ J solve their problems given prices

(iii) markets for consumption goods10 and capital clear, i.e.,∫
I
(dcit)di+

∫
J
(dcjt )dj =

(∫
I
(a− ιit)kit di+

∫
J
(a− ιjt ) k

j
t dj

)
dt, and

∫
I
kitdi+

∫
J
kjtdj = Kt,

(9) where dKt =

(∫
I
(Φ(ιit)− δ)kit di+

∫
J
(Φ(ιjt )− δ) k

j
t dj

)
dt+σKtdZt.

9Negative consumption could be interpreted as the disutility from an additional labor input to produce
extra output.

10In equilibrium, while aggregate consumption is continuous with respect to time, the experts’ and
households’ consumptions are not. However, their singular parts cancel out in the aggregate.
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Note that if two markets clear, then the remaining market for risk-free lending
and borrowing at rate r automatically clears by Walras’ Law.

Since agents are atomistic perfectly competitive price-takers, the distribution
of wealth among experts and among households in this economy does not matter.
However, the wealth of experts relative to that of households plays a crucial role
in our model, as we discuss in the next section.

II. Solving for the Equilibrium

We have to determine how the equilibrium price qt and allocation of capital,
as well as the agents’ consumption decisions, depend on the history of macro
shocks {Zs; 0 ≤ s ≤ t}. Our procedure to solve for the equilibrium has two
major steps. First, we use the agent utility maximization and market-clearing
conditions to derive the properties of equilibrium processes. Second, we show that
the equilibrium dynamics can be described by a single state variable, the experts’
wealth share ηt, and derive a system of equations that determine equilibrium
variables as functions of ηt.

Intuitively, we expect the equilibrium prices to fall after negative macro shocks,
because those shocks lead to expert losses and make them more constrained. At
some point, prices may drop so far that less productive households may find
it profitable to buy physical capital from experts. Less productive households’
purchases are speculative as they hope to sell capital back to experts at a higher
price in the future. In this sense households are liquidity providers, as they
provide some of the functions of the traditional financial sector in times of crises.

Internal Investment

The returns (5) and (6) that experts and households receive from capital are
maximized by choosing the investment rate ι that solves

max
ι

Φ(ι)− ι/qt.

The first-order condition Φ′(ι) = 1/qt (marginal Tobin’s q) implies that the opti-
mal investment rate is a function of the price qt, i.e.,

ιt = ιt = ι(qt).

The determination of the optimal investment rate is a completely static problem:
It depends only on the current price of capital qt. From now on, we incorporate
the optimal investment rate in the expressions for the returns drkt and drkt that
experts and households earn.
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Households’ Optimal Portfolio Choice

Denote the fraction of physical capital held by households by

1− ψt =
1

Kt

∫
J
kjt dj.

The problem of households is straightforward because they are not financially
constrained. In equilibrium they must earn the return of r, their discount rate,
from risk-free lending to experts and, if 1 − ψt > 0, from holding capital. If
households do not hold any physical capital, i.e., ψt = 1, their expected return on
capital must be less than or equal to r. This leads to the equilibrium condition

(H)
a− ι(qt)

qt
+ Φ(ι(qt))− δ + µqt + σσqt︸ ︷︷ ︸

Et[drkt ]/dt

≤ r, with equality if 1− ψt > 0.

Experts’ Optimal Portfolio and Consumption Choices

The experts face a significantly more complex problem, because they are fi-
nancially constrained. Their problem is dynamic, that is, their choice of leverage
depends not only on the current price levels, but also on the entire future law of
motion of prices. Even though experts are risk-neutral with respect to consump-
tion, they exhibit risk-averse behavior in our model (in aggregate) because their
marginal utility of wealth is stochastic — it depends on time-varying investment
opportunities. Greater leverage leads to higher profit and also greater risk. Ex-
perts who take on more risk suffer greater losses exactly when they value their
funds the most: Negative shocks depress prices and create attractive investment
opportunities.

We characterize the experts’ optimal dynamic strategies through the Bellman
equation for their value functions. Consider a feasible strategy {xt, dζt}, which
specifies leverage xt and the consumption rate dζt = dct/nt of an expert, and
denote by

(10) θtnt ≡ Et
[∫ ∞

t
e−ρ(s−t)dcs

]
,

the expert’s future expected payoff under this strategy. Note that the expert’s
consumption dct = dζtnt under the strategy {xt, dζt} is proportional to wealth,
and therefore the expert’s expected payoff is also proportional to wealth. The
following proposition provides necessary and sufficient conditions for the strategy
{xt, dζt} to be optimal, given the price process {qt, t ≥ 0}.

LEMMA II.1: Let {qt, t ≥ 0} be a price process for which the maximal payoff
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that any expert can attain is finite.11 Then the process {θt} satisfies (10) under
the strategy {xt, dζt} if and only if

(11) ρθtnt dt = nt dζt + E[d(θtnt)]

when nt follows (7), and the transversality condition E[e−ρtθtnt]→ 0 holds.
Moreover, this strategy is optimal if and only if

(12)

ρθtnt dt = max
x̂t≥0,dζ̂t≥0

nt dζ̂t +E[d(θtnt)] s.t .
dnt
nt

= x̂t dr
k
t + (1− x̂t) r dt− dζ̂t.

Proposition II.2 breaks down the Bellman equation (12) into specific conditions
that the stochastic laws of motion of qt and θt, together with the experts’ optimal
strategies, have to satisfy.

PROPOSITION II.2: Consider a finite process

dθt
θt

= µθt dt+ σθt dZt.

Then ntθt represents the maximal future expected payoff that an expert with net
worth nt can attain and {xt, dζt} is an optimal strategy if and only if

(i) θt ≥ 1 at all times, and dζt > 0 only when θt = 1,

(ii) µθt = ρ−r, (E)

(iii) either xt > 0 and
a− ι(qt)

qt
+ Φ(ι(qt))− δ + µqt + σσqt − r︸ ︷︷ ︸

expected excess return on capital, Et[drkt ]/dt−r

= −σθt (σ + σqt )︸ ︷︷ ︸
risk premium

, (EK)

or xt = 0 and E[drkt ]/dt− r ≤ −σθt (σ + σqt ),

(iv) and the transversality condition E[e−ρtθtnt] → 0 holds under the strategy
{xt, dζt}.

Under (i) through (iv), θt represents the experts’ marginal utility of wealth (not
consumption), which prices assets held by experts. The left-hand side of (EK)
represents the excess return on capital over the risk-free rate. The right-hand
side represents the experts’ risk premium, or their precautionary motive. We will
see that in equilibrium σθt ≤ 0 while σ + σqt > 0, so that experts suffer losses on
capital exactly in the event that better investment opportunities arise, i.e., as θt
rises. According to the second part of (EK), if endogenous risk ever made the

11In our setting, because experts are risk-neutral, their value functions under many price processes
can be easily infinite (although, of course, in equilibrium they are finite).
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required risk premium greater than the excess return on capital, experts would
choose to hold no capital in volatile times and instead lend to households at the
risk-free rate, waiting to pick up assets at low prices at the bottom (“flight to
quality”).

As further analysis will make clear, the precautionary motive increases with ag-
gregate leverage of experts, but disappears completely if experts invest in capital
without using leverage. Therefore, the incentives of individual experts to take on
risk are decreasing in the risks taken by other experts. This leads to the equilib-
rium choice of leverage. We conjecture, and later verify, that experts always use
positive leverage in equilibrium, so that

ψtqtKt > Nt, where Nt =

∫
I
nit di.

It is interesting to note that because θt is the experts’ marginal utility of wealth,
at any time t they use the stochastic discount factor (SDF)

(13) e−ρs
θt+s
θt

to price cash flows at a future time t+ s. That is, the price of any asset that pays
a random cash flow of CFt+s at time t+ s is

Et

[
e−ρsθt+s

θt
CFt+s

]
.

Market Clearing

The market for capital clears by virtue of our notation, with shares ψt and
1 − ψt of capital allocated to experts and households. Furthermore, markets
for consumption goods and risk-free assets clear because the households, whose
consumption may be positive or negative, are willing to borrow and lend arbitrary
amounts at the risk-free rate r.

Wealth Distribution

Due to financial frictions, the wealth distribution across agents matters. In
aggregate, experts and households have wealth

Nt =

∫
I
nit di and qtKt −Nt =

∫
J
njt dj,

respectively. The experts’ wealth share is

ηt ≡
Nt

qtKt
∈ [0, 1].
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Experts become constrained when ηt falls, leading to a larger fraction of capital
1−ψt allocated to households, a lower price of capital qt, and a lower investment
rate ι(qt).

Our model has convenient scale-invariance properties, which imply that ηt fully
determines the price level, as well as inefficiencies with respect to investment
and capital allocation. That is, for any equilibrium in one economy, there is an
equivalent equilibrium with the same laws of motion of ηt, qt, θt, and ψt in any
economy scaled by a factor of ς ∈ (0,∞).

We will characterize an equilibrium that is Markov in the state variable ηt.
Before we proceed, Lemma II.3 derives the equilibrium law of motion of ηt =
Nt/(qtKt) from the laws of motion of Nt, qt, and Kt. In Lemma II.3, we do not
assume that the equilibrium is Markov.12

LEMMA II.3: The equilibrium law of motion of ηt is

(14)
dηt
ηt

=
ψt − ηt
ηt

(drkt −rdt−(σ+σqt )
2dt)+

a− ι(qt)
qt

dt+(1−ψt)(δ−δ)dt−dζt,

where dζt = dCt/Nt, with dCt =
∫
I(dc

i
t) di, is the aggregate expert consumption

rate. Moreover, if ψt > 0, then (EK) implies that we can write

(15)
dηt
ηt

= µηt dt+ σηt dZt − dζt,

where σηt =
ψt − ηt
ηt

(σ+σqt ) and µηt = −σηt (σ+σqt+σ
θ
t )+

a− ι(qt)
qt

+(1−ψt)(δ−δ).

Markov Equilibrium

In a Markov equilibrium, all processes are functions of ηt, i.e.,

(16) qt = q(ηt), θt = θ(ηt) and ψt = ψ(ηt).

If these functions are known, then we can use equation (15) to map any path of
aggregate shocks {Zs, s ≤ t} into the current value of ηt and subsequently qt, θt,
and ψt.

To solve for these functions, we need to convert the equilibrium conditions into
differential equations. That is, from any tuple (η, q(η), q′(η), θ(η), θ′(η)), we need
a procedure to convert the equilibrium conditions into (q′′(η), θ′′(η)). Proposition
II.4 does this in two steps:

12We conjecture that the Markov equilibrium we derive in this paper is unique, i.e., there are no other
equilibria in the model (Markov or non-Markov). While the proof of uniqueness is beyond the scope of
thispaper, a result like Lemma II.3 should be helpful for the proof of uniqueness.
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1) Using Ito’s lemma, compute the volatilities σηt , σ
q
t , and σθt and find ψt, and

2) compute the drifts µηt , µ
q
t , and µθt , and use Ito’s lemma again to find q′′(η)

and θ′′(η).

Proposition 2 also describes the domain and the boundary conditions for the
system.

PROPOSITION II.4: The equilibrium domain of functions q(η), θ(η), and ψ(η)
is an interval [0, η∗]. Function q(η) is increasing, θ(η) is decreasing, and the
boundary conditions are

q(0) = q, θ(η∗) = 1, q′(η∗) = 0, θ′(η∗) = 0 and lim
η→0

θ(η) =∞.

The experts’ consumption dζt is zero when ηt < η∗ and positive at η∗, so that η∗

is a reflecting boundary of the process ηt. The following procedure can be used to
compute ψ(η), q′′(η), and θ′′(η) from (η, q(η), q′(η), θ(η), θ′(η)).

1. Find ψ ∈ (η, η + q(η)/q′(η)) such that13

(17)
a− a
q(η)

+ δ − δ + (σ + σqt )σ
θ
t = 0,

(18)

where σηt η =
(ψ − η)σ

1− (ψ − η)q′(η)/q(η)
, σqt =

q′(η)

q(η)
σηt η and σθt =

θ′(η)

θ(η)
σηt η.

If ψ > 1, set ψ = 1 and recalculate (18).

2. Compute

µηt = −σηt (σ + σqt + σθt ) +
a− ι(q(η))

q(η)
+ (1− ψ)(δ − δ),

µqt = r − a− ι(q(η))

q(η)
− Φ(q(η)) + δ − σσqt − σθt (σ + σqt ), µθt = ρ− r,

(19) q′′(η) =
2 [µqt q(η)− q′(η)µηt η]

(σηt )
2
η2

and θ′′(η) =
2
[
µθt θ(η)− θ′(η)µηt η

]
(σηt )

2
η2

.

Proposition II.4 allows us to derive analytical results about equilibrium behavior
and asset prices and to compute equilibria numerically. The proof is in Appendix
C.

13The left-hand side of (17) decreases from (a − a)/q(η) + δ − δ > 0 to −∞ over the interval ψ =
[η, η + q(η)/q′(η)].
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Algorithm to Solve the Equations

The numerical computation of the functions q(η), θ(η), and ψ(η) poses chal-
lenges because of the singularity at η = 0. In addition, we need to determine the
endogenous endpoint η∗ and match the boundary conditions at both 0 and η∗.
To match the boundary conditions, it is helpful to observe that if function θ(η)
solves the equations of Proposition II.4, then so does any function ςθ(η), for any
constant ς > 0. Therefore, one can always adjust the level of θ(η) ex post to match
the boundary condition θ(η∗) = 1. We use the following algorithm to calculate
our numerical examples.

1) Set q(0) = q, θ(0) = 1 and θ′(0) = −1010.

2) Set qL = 0 and qH = 1015.

3) Guess that q′(0) = (qL + qH)/2. Use the Matlab function ode45 to solve for
q(η) and θ(η) until either (a) q(η) reaches q̄ or (b) θ′(η) reaches 0 or (c) q′(η)
reaches 0, whichever happens soonest. If q′(η) reaches 0 before any of the
other events happens, then increase the guess of q′(0) by setting qL = q′(0).
Otherwise, let qH = q′(0). Repeat until convergence (e.g., 50 times).

4) If qH was chosen in step 2 to be large enough, then in the end θ′(η) and
q′(η) will reach 0 at the same point η∗.

5) Divide the entire function θ(η) by θ(η∗) to match the boundary condition
θ(η∗) = 1.

The more negative the initial choice of θ′(0), the better we can approximate the
boundary condition θ(0) =∞, that is, the higher the value of θ(0) becomes after
we divide the entire solution by θ(η∗). We provide our Matlab implementation of
this algorithm in the Online Appendix.

Numerical Example

Figure 1 presents functions q(η), θ(η), and ψ(η) characterized by Proposition
II.4 for parameter values ρ = 6%, r = 5%, a = 11%, a = 7%, δ = δ = 5%,
σ = 10%, and Φ(ι) = 1

κ(
√

1 + 2κι− 1) with κ = 2.14 Under these assumptions,
q = 0.8 and q̄ = 1.2.

As η increases, the price of capital q(η) increases and the marginal value of
expert wealth θ(η) declines. Experts hold all capital in the economy when they
have high net worth, when ηt ∈ [ηψ, η∗], but households hold some capital, and
so ψ(η) < 1, when ηt < ηψ.

The map from the history of aggregate shocks dZt to the state variable ηt is
captured by the drift µηt η and the volatility σηt η, depicted on the top panels of

14The investment technology in this example has quadratic adjustment costs: An investment of Φ +
κ
2

Φ2 generates new capital at rate Φ.
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Figure 1. Equilibrium functions q(η), θ(η) and ψ(η).

Figure 2. The drift of ηt depends the relative portfolio returns and consumption
rates of experts and households. While experts are levered and earn a risk pre-
mium, households earn the risk-free return of r. The bottom panels of Figure 2
show expert leverage as well as the returns that experts and households earn from
capital. Risk premia and expert leverage rise as ηt falls. The households’ rate of
return from capital equals r when they hold capital on [0, ηψ], but otherwise it is
less than r.

The volatility of ηt is non-monotonic: It rises over the interval [0, ηψ] and falls
over [ηψ, η∗]. Point η = 0 is an absorbing boundary, which is never reached in
equilibrium as ηt evolves like a geometric Brownian motion in the neighborhood
of 0 (see Proposition III.2). Point η∗ is a reflecting boundary where experts
consume excess net worth.

Because ηt gravitates toward the reflecting boundary η∗ in expectation, the
point η∗ is the stochastic steady state of our system. Point η∗ in our model is
analogous to the deterministic steady state in traditional macro models, such as
those of BGG and KM. Similar to the steady state in these models, η∗ is the
point of global attraction of the system and, as we see from Figure 2 and discuss
below, the volatility near η∗ is low.

However, point η∗ also differs from the deterministic steady state in BGG and
KM in important ways. Unlike log-linearized models, our model does not set the
exogenous risk σ to 0 to identify the steady state, but rather fixes the volatility
of macro shocks and looks for the point where the system remains stationary
in the absence of shocks. Thus, the location of η∗ depends on the exogenous
volatility σ. It is determined indirectly through the agents’ consumption and
portfolio decisions, taking shocks into account. As we discuss in Sections III and
IV, the endogeneity of η∗ leads to a number of important phenomena, including
nonlinearity — the system responds very differently to small and large shocks at
η∗ — and the volatility paradox — that of the system is prone to endogenous risk
even when exogenous risk σ is low.
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Figure 2. The drift and volatility of ηt, expert leverage, and expected asset returns.

Inefficiencies in Equilibrium

Without financial frictions, experts would permanently manage all capital in
the economy. Capital would be priced at q̄, leading to an investment rate of ι(q̄).
Moreover, experts would consume their net worth in a lump sum at time 0, so
that the sum of utilities of all agents would be q̄K0. With frictions, however, there
are three types of inefficiencies in our model:

(i) capital misallocation, since less productive households end up managing
capital for low ηt, when ψt < 1,

(ii) under-investment, since ι(qt) < ι(q̄), and

(iii) consumption distortion, since experts postpone some of their consumption
into the future.

Note that these inefficiencies vary with the state of the economy: They get worse
when ηt drops.

Owing to these inefficiencies, the sum of utilities of all agents is less than first
best utility q̄K0. Even at point η∗ the sum of the agents’ utilities is
(20)

E

[∫ ∞
0

e−ρtdCt

]
︸ ︷︷ ︸

expert payoff

+E

[∫ ∞
0

e−rtdCt

]
︸ ︷︷ ︸

household payoff

= θ(η∗)N0︸ ︷︷ ︸
expert payoff

+ q(η∗)K0 −N0︸ ︷︷ ︸
household payoff/wealth

= q(η∗)K0 < q̄K0,

since θ(η∗) = 1 and q(η∗) < q̄.
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III. Instability, Endogenous Risk, and Asset Pricing

Having solved for the full dynamics, we can address various economic questions
like (i) How important is fundamental cash flow risk relative to endogenous risk
created by the system? (ii) Does the economy react to large exogenous shocks
differently compared to small shocks? (iii) Is the dynamical system unstable and
the economy therefore subject to systemic risk?

The equilibrium exhibits instability, which distinguishes our analysis from the
log-linearized solutions of BGG and KM. As in those papers, the price of capital
in our model is subject to endogenous risk σqt , which leads to excess volatility.
However, unlike in BGG and KM, the amount of endogenous risk in our model
varies over the cycle: It goes to zero near the steady state η∗, but it is large below
the stochastic steady state η∗. Thus, an unusually long sequence of negative shocks
throws the economy into a volatile crisis regime. More bad shocks can put the
system into a depressed regime, from which it takes a long time to recover. Slow
recovery implies a bimodal stationary distribution over the state space. This is in
sharp contrast to papers that log linearize, predicting a much more stable system
with a normal stationary distribution around the steady state. Papers such as
BGG and KM do not capture the distinction between relatively stable dynamics
near the steady state and much stronger amplification below the steady state.
Our analysis highlights the sharp distinction between crisis and normal times.

The nonlinearities of system dynamics are robust to modeling assumptions. For
example, a model with logarithmic utility would also generate low (but nonzero)
amplification near the steady state, as well as high amplification below the steady
state, especially at the point where experts start selling capital to households.

The differences in system dynamics near and away from the steady state have
to do with the forces that determine the steady state: experts’ profits and their
endogenous payout/consumption decisions. The system gravitates toward a point
where these two forces exactly balance each other out: the stochastic steady state.
Experts accumulate net worth in crisis regimes, where volatility and risk premia
are high. They only start paying out once their aggregate net worth recovers
enough that the probability of the next crisis becomes tolerable.

Amplification Due to Endogenous Risk

Endogenous risk refers to changes in asset prices attributable not to changes
in fundamentals, but rather to portfolio adjustments in response to constraints
and/or precautionary motives. While exogenous fundamental shocks cause initial
losses, feedback loops that arise when agents react to these losses create endoge-
nous risk. In our model, exogenous risk σ is constant, but endogenous risk σqt
varies with the state of the system.

The amplification of shocks that creates endogenous risk depends on (i) expert
leverage and (ii) price reactions to shocks, which feed back to the experts’ net
worth and lead to further adjustments. While the experts finance themselves
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through fully liquid short-term debt, their assets are subject to aggregate market
illiquidity.15 Figure 3 illustrates the feedback mechanism of amplification, which
has been identified by both BGG and KM near the steady state of their models.

𝑘𝑡 ↓    
adverse  
shock  
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demand 
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due to 
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↓ 

Figure 3. Adverse feedback loop.

The immediate effect of a shock dZt that reduces Kt by 1% is a drop of Nt by
ψ
η%, and a drop of ηt by (ψη − 1)%, where ψ

η is the experts’ leverage ratio (assets

to net worth). This drop in ηt causes the price q(ηt) to drop by

φ% ≡ q′(ηt)

q(ηt)

total drop in η︷ ︸︸ ︷(
ψt
ηt
− 1

)
ηt %.

That is, this aftershock causes qtKt to drop further by φ%, Nt further by ψ
η φ%

and a ηt further by (ψη − 1)φ%. We see that the initial shock gets amplified by a
factor of φ each time it goes through the feedback loop. If φ < 1, then this loop
converges with a total amplification factor of 1/(1 − φ) and cumulative impacts
on ηt and q(ηt) of
(21)

dηt
ηt

=

ψ
η − 1

1− φ
% =

1

η

ψ − η
1− (ψ − η)q′(η)/q(η)

% and
dqt
qt

=
q′(η)

q(η)

ψ − η
1− (ψ − η)q′(η)/q(η)

%

respectively. This leads us to formulas (18), provided by Proposition II.4, that
capture how leverage and feedback loops contribute to endogenous risk.

The amplification effect of q′(η) on the endogenous volatility σqt is nonlinear,

15Recall that the price impact of a single expert is zero in our setting. However, the price impact
due to aggregate shocks can be large. Hence, a “liquidity mismatch index” that captures the mismatch
between market liquidity of experts’ asset and funding liquidity on the liability side has to focus on price
impact of assets caused by aggregate shocks rather than idiosyncratic shocks. See Brunnermeier, Gorton
and Krishnamurthy (2013).
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since q′(η) enters not only the numerator, but also the denominator of (21) and
(18). If q′(η) is so large that φ > 1, then the feedback effect would be completely
unstable, leading to infinite volatility.

Normal versus Crisis Times and “Ergodic Instability”

The equilibrium in our model has no endogenous risk near the stochastic steady
state η∗ and significant endogenous risk below the steady state. This result
strongly resonates with what we observe in practice during normal times and
in crisis episodes.

THEOREM III.1: In equilibrium, at η∗ the system has no amplification and σqt =
0, since q′(η∗) = 0. For ηt < η∗, exogenous shocks spill over into prices, leading
to the indirect dynamic amplification factor of 1/(1− (ψt − ηt)q′(ηt)/q(ηt)).

PROOF:
This result follows directly from Proposition II.4.

The left panel of Figure 4 shows the total volatility of the value of capital σ+σqt ,
for our computed example. Because endogenous risk σqt rises sharply below steady
state, the system exhibits nonlinearities: Large shocks affect the system very
differently from small shocks. Near the point ηψ, increased endogenous risk and
leverage lead to a high volatility of ηt, as seen in Figure 2. This leads to systemic
risk, and the economy occasionally ends up in a depressed regime far below the
steady state, where most of the capital is allocated inefficiently to households.
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Figure 4. Systemic risk: total volatility of capital and the stationary density of ηt.

The right panel of Figure 4 shows the stationary distribution of ηt. Stationary
density measures the average amount of time that the variable ηt spends in the
long run at different parts of the state space. The stationary distribution can be
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computed from the drift and volatility of ηt using Kolmogorov forward equations
(see Appendix B).

The key feature of the stationary distribution in Figure 4 is that it is bimodal
with high densities at the extremes. We refer to this characteristic as “ergodic
instability.” The system exhibits large swings, but it is still ergodic, ensuring that
a stationary distribution exists.

The stationary density is high near η∗, as it is the attracting point of the
system, but very thin in the volatile middle region below η∗. The system moves
fast through the regions of high volatility, and so the time spent there is short. The
excursions below the stochastic steady state are characterized by high uncertainty
that may take the system to depressed states near η = 0. In other words, the
economy is subject to breakdowns, i.e., systemic risk. At the extreme low end
of the state space, assets are essentially valued by unproductive households, with
qt ∼ q, and so the volatility is low. The system spends most of the time around
the extreme points: Either experts are well capitalized and the financial system
can deal well with small adverse shocks, or the economy gets trapped for a long
time near very low η-values.16

The following proposition formally demonstrates that the stationary density (if
it exists) indeed has peaks at η = 0 and η = η∗. The proof in Appendix C shows
that variable ηt evolves like a geometric Brownian motion in a neighborhood of
0, and it uses the Kolmogorov forward equation to characterize the stationary
density near 0. The stationary distribution may fail to exist if the experts’ pro-
ductive advantage is small relative to the volatility of capital: In that case, the
system gets trapped near η = 0 in the long run.

PROPOSITION III.2: Denote by Λ = (a − a)/q + δ − δ the risk premium that
experts earn from capital at η = 0. As long as

(22) 2(ρ− r)σ2 < Λ2

the stationary density d(η) exists and satisfies d′(η∗) > 0 and d(η)→∞ as η → 0.
If 2(ρ− r)σ2 > Λ2 then the stationary density does not exist and in the long run
ηt ends up in an arbitrarily small neighborhood of 0 with probability close to 1.

In our numerical examples, Λ = 0.05.

16The shape of the stationary distribution depends on the assumption that experts are able to sell
capital to households. Fire sales lead to price volatility, because households have a lower valuation for
capital, and slow recovery from depressed states. In contrast, in He and Krishnamurthy (2012) the
stationary distribution is not U-shaped and recovery is fast. Effectively, experts get monopoly rents
as only they can hold capital in crisis. Note also that the stationary distribution does not depend
on amplification through prices. For example, Isohätälä, Milne and Roberston (2012) produce a U-
shaped distribution in a model where agents recover slowly from a depressed region, as they scale down
investments to reduce risk. In our model also, price effects are absent near η = 0, as capital is effectively
priced at q by households.
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Robustness of the Equilibrium Features

Our model exhibits stability in normal times, and strong amplification in crisis
times, because the wealth distribution evolves endogenously. The steady state
of the wealth distribution is determined by the relative rates of consumption of
experts and households, as well as by the difference in returns that experts and
households earn on their portfolios. Variable ηt reaches the stochastic steady state
when experts accumulate enough wealth to absorb most shocks easily. At that
point, competition among experts pushes up the price of capital and drives down
the risk premia that experts earn. These factors encourage experts to consume
their net worth instead of reinvesting it.

Near the stochastic steady state η∗, where experts become comfortable and
risk premia come down, the price of capital is less responsive to shocks. Thus,
amplification and endogenous risk are significantly lower near the steady state.
In fact, in our risk-neutral model, the risk premium −σθt (σ+σqt ) and endogenous
risk σqt both drop to zero at η∗.

To confirm the robustness of these equilibrium features to risk neutrality, we
solve a variation of our model, in which experts and households have logarithmic
utilities with discount rates ρ and r. All other features of the model, including pro-
duction technologies, financial frictions, and asset markets, are the same. Thus,
equations (5) and (6) expressing the agents’ return on capital are unchanged. The
law of motion of ηt takes the same form as (14), except that the risk-free return
drt is no longer constant.

Models with logarithmic utility are easy to solve because they lead to myopic
optimal consumption and portfolio choice decisions. Specifically,

1) the optimal consumption rate of experts is dζt = ρ dt (households, r dt),
regardless of investment opportunities, and

2) the agents’ optimal portfolio choice always results in the volatility of net
worth equal to the Sharpe ratio of risky investment.

Proposition III.3, analogous to Proposition II.4 of the risk-neutral case, converts
these equilibrium conditions into a first-order differential equation for q(η) that
can be solved to find equilibrium.

PROPOSITION III.3: The equilibrium domain consists of subintervals [0, ηψ),
where ψ(η) < 1 and [ηψ, 1], where ψ(η) = 1. Function q(η) satisfies

(23) q(0) =
a− ι(q(0))

r
and q(η) =

a− ι(q(η))

r(1− η) + ρη
on [ηψ, 1].

The following procedure can be used to compute ψ(η) and q′(η) from (η, q(η)) on
(0, ηψ).
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1. Find ψt that satisfies

(24) (r(1− η) + ρη)qt = ψta+ (1− ψt)a− ι(qt)

2. Compute
(25)

σ + σqt =

√
(a− a)/qt + δ − δ

ψt/ηt − (1− ψt)/(1− ηt)
and q′(η) =

q(η)

ψt − ηt

(
1− σ

σ + σqt

)
.

The law of motion of ηt is given by

(26) σηt =
ψt − ηt
ηt

(σ + σqt ) and µηt = (σηt )2 +
a− ι(qt)

qt
+ (1− ψt)(δ − δ)− ρ.

The proof is in Appendix C.17

The boundary conditions at the two endpoints 0 and ηψ are sufficient to solve
the first-order ordinary differential equation for q(η) and determine the endoge-
nous boundary ηψ. Figure 5 shows a computed example for the same parameter
values of ρ, r, a, a, δ, δ, and κ as we used in Section II, and σ = 5% and 10%.
The stochastic steady state η∗ is now defined as the point η∗ where µηt = 0. Cer-
tainly, the sharp result of the risk-neutral model that σqt = 0 at the steady state
η∗ no longer holds exactly, as it is no longer true that q′(η∗) = 0. However, the
dynamics are still characterized by temporary stability near the steady state η∗

and increased volatility in crises below the steady state. Indeed, while endoge-
nous risk is low near η∗, it spikes below ηψ when experts start selling capital to
households.18

These features arise because the wealth distribution depends endogenously on
σ. As σ increases, risk premia rise, experts make more profit, and the steady
state η∗ shifts to the right into the region where experts are less levered (see the
bottom right panel of Figure 5). This endogenous force stabilizes the steady state
as exogenous risk increases. At the same time, point ηψ where households start
participating in capital markets also shifts to the right. Interestingly, the spike
in volatility at point ηψ is the highest when exogenous risk σ is the lowest.

17The equilibrium risk-free rate, drt, can be determined from the condition E[drkt −drt]/dt = ψt/ηt(σ+

σqt )2 (see the proof of Proposition III.3). Because q(η) has a kink at ηψ , we have

drt =

(
a− ι(qt)

qt
+ Φ(ι(qt))− δ + µqt + σσqt −

ψt

ηt
(σ + σqt )2

)
dt+

1

2
(σηt )2

q′(ηψ+)− q′(ηψ−)

q(ηψ)
dLt,

where µqt = (µηt q
′(η) + 1

2
(σηt )2q′′(η))/q(η) for η 6= ηψ (and 0 at η = ηψ), and Lt is the local time of ηt

at ηψ .
18The location of the steady state η∗ above ηψ depends on the assumption that ρ is not significantly

larger than r. The jump in volatility at point ηψ occurs because the price q(η) has a kink at ηψ , which
occurs because of the mechanical relationship (24) between ψt and the market price in the log utility
model. Technically, because of the kink, we have to write the risk-free return in the model in the form
drt, and not rt dt. Also, note that the market-clearing condition (24) implies that q′(η) < 0 when η > ηψ .
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Figure 5. Equilibrium with logarithmic utility.

One may wonder about the robustness of the stationary distribution of ηt to
the agents’ preferences. Lemma C.1 in Appendix C shows that the hump of the
stationary distribution near η = 0 exists only under some parameter values when
agents have logarithmic utility (specifically, if ρ > r+Λ). Intuitively, because risk-
averse experts are more cautious than risk-neutral experts, they use less leverage
and the economy is less likely to get stuck near η = 0.

Correlation in Asset Prices and “Fat Tails”

Excess volatility due to endogenous risk spills over across all assets held by con-
strained agents, making asset prices in cross-section significantly more correlated
in crisis times. Erb, Harvey and Viskanta (1994) document this increase in corre-
lation within an international context. This phenomenon is important in practice
as many risk models have failed to take this correlation effect into account in the
recent housing price crash.19

We illustrate the correlation effects in our model by extending it to multiple
types of capital. A similar argument about correlation has been proposed in He
and Krishnamurthy (2012). Specifically, we can reinterpret equation (1),

dkt = (Φ(ιt)− δ)kt dt+ σkt dZt,

19See “Efficiency and Beyond” in The Economist, July 16, 2009.
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as the law of motion of fully diversified portfolios of capital held by experts,
composed of specific types of capital l ∈ [0, 1] that follow

dklt = (Φ(ιt)− δ)klt dt+ σklt dZt + σ̂klt dZ
l
t.

The diversifiable specific Brownian shocks dZ lt are uncorrelated with the aggregate
shock dZt. Because of this, the specific shocks carry no risk premium, so all types
of capital are trading at the same price qt.

In equilibrium, the laws of motion of ηt and qt are the same as in our basic
model and depend only on the aggregate shocks dZt. The return on capital l is
given by

drk,lt =

(
a− ι(qt)

qt
+ Φ(ι(qt))− δ + µqt + σσqt

)
dt+ (σ + σqt ) dZt + σ̂ dZ lt.

The correlation between assets l and l′,

Cov[qtk
l
t, qtk

l′
t ]√

V ar[qtklt] V ar[qtk
l′
t ]

=
(σ + σqt )

2

(σ + σqt )
2 + σ̂2

,

increases in the amount of endogenous risk σqt . Near the steady state η∗, σqt = 0
and so the correlation is σ2/(σ2 + σ̂2). All the correlation near η∗ is fundamental.
Away from the steady state, some of the correlation becomes endogenous: It arises
when both assets are held in portfolios of constrained agents.

The equilibrium patterns of volatility and correlation have implications for the
pricing of derivatives. First, since the volatility rises in crisis times, option prices
exhibit a “volatility smirk” in normal times. This observation is broadly consis-
tent with empirical evidence (see, e.g., Bates (2000)). Put options have a higher
implied volatility when they are further out-of-the-money. That is, the larger
the price drop has to be for an option to ultimately pay off, the higher is the
implied volatility or, put differently, far ou- of-the-money put options are over-
priced relative to at-the-money put options. Second, so-called dispersion trades
try to exploit the empirical pattern that the smirk effect is more pronounced for
index options than for options written on individual stocks (Driessen, Maenhout
and Vilkov (2009)). Index options are primarily driven by macro shocks, while
individual stock options are also affected by idiosyncratic shocks. The observed
option price patterns arise quite naturally in our setting as the correlation across
stock prices increases in crisis times.20 Since data for crisis periods are limited,
option prices provide valuable information about the market participants’ implicit
probability weights of extreme events and can be useful for model calibration.

20In our setting, options are redundant assets as their payoffs can be replicated by the underlying asset
and the bond, since the volatility is a smooth function in qt. This is in contrast to stochastic volatility
models, in which volatility is independently drawn and subject to a further stochastic factor, for which
no hedging instrument exists.
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IV. Volatility Paradox and the Kocherlakota Critique

Having established an equilibrium with instability away from the steady state,
we now investigate whether small exogenous shocks generate significant endoge-
nous risk. In this section we find some surprising answers. We uncover the
volatility paradox: Endogenous risk does not go away as fundamental risk σ goes
to 0. Surprisingly, the maximal level of endogenous risk σqt has very low sensitivity
to σ, and it may be slightly increasing as σ goes down. Thus, systemic risk exists
even in low-volatility environments. If exogenous risk σ does not have a strong
effect on maximal endogenous risk σqt , then what does? The biggest determinant
is liquidity: the ease with which the system can adjust to tightening financial con-
straints. For example, market illiquidity, which measures the difference between
first-best value of capital q̄ and its lowest liquidation value q, plays an important
role. If the liquidation value of capital q deteriorates, maximal endogenous risk
σq in equilibrium rises significantly.

Because of the volatility paradox, the Kocherlakota critique does not apply
to our setting. Kocherlakota (2000) and Cordoba and Ripoll (2004) argue am-
plification cannot be large in the settings of BGG and KM, when an isolated
unanticipated shock knocks the log-linearized system away from the steady state.
In those models, following a shock, the system is on a sure recovery path back
to the deterministic steady state. When recovery is certain, the price has to fall
very little to make it attractive for less productive households to buy capital,
i.e., amplification is low. In contrast, in our model recovery is not certain after
a shock. Rather the shock generates the forward-looking fear that the price may
keep on falling all the way to q. That is why market illiquidity of capital — which
depends on the lower bound q, to which prices may theoretically drop — is the
key determinant of endogenous risk. Full dynamics are very different from local
dynamics near the steady state. Backward induction from the boundary at ηt = 0
implies that, even as σ → 0, endogenous risk does not disappear and the stochas-
tic steady state of the system does not converge to the deterministic steady state.
In fact, as σ → 0, amplification (the ratio of endogenous to exogenous risk) in
our model becomes infinite on almost the entire state space.

Volatility Paradox

One would expect endogenous risk to disappear as exogenous risk σ declines
toward 0. In fact, it does not. As σ falls, the system becomes more prone
to volatility spikes, maximal endogenous risk σqt may rise, and the system still
spends a significant fraction of time in crisis states where capital is misallocated.
For our baseline example, Table 1 and Figure 6 demonstrate how various measures
of instability persist, or even deteriorate, as σ falls.

As σ falls to 0, endogenous risk in crises persists, and amplification becomes
infinite. While the level of risk at the steady state may decline, the buffer zone
between the steady state η∗ and crisis regimes gets thinner. At η∗, the volatility
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σ 10% 5% 1% 0.2% 0.1% as σ → 0
Volatility of volatility σ + σqt near η∗ 9.58% 13.75% 35.33% 127% 239% increases

Maximal endogenous risk, maxσqt 6.64% 6.69% 6.51% 6.36% 6.33% persists
Maximal amplification, maxσqt /σ 0.66 1.34 6.5 31.8 63.2 increases

Expected time to reach ηψ from η∗ 24.2 31.8 26.4 9.4 3.1 declines
% of time system spends when ψt < 1 14.16% 6.8% 3.35% 3.12% 3.14% persists

% of time system spends when ψt < 0.5 6.74% 2.15% 0.47% 0.28% 0.31%. persists

Table 1— Various measures of instability for different values of σ.

of volatility σ+ σqt rises and the expected time to reach ηψ falls. As a result, the
time that the system spends in crisis states does not converge to zero as σ goes
to 0. The shrinking distance between the steady state and crisis states has to be
attributed to endogenous leverage. A decline in exogenous volatility encourages
experts to increase leverage by reducing their net worth buffer through a more
aggressive payout policy (see the right panel of Figure 6).21
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These phenomena are fairly robust. For example, in Figure 5, in the version of
our model with logarithmic utility, the maximal endogenous risk σqt also rises as
exogenous risk σ declines. As the following proposition shows analytically, both
with risk-neutrality and logarithmic utility, in deep crisis states the equilibrium
level of σηt increases as σ declines.

PROPOSITION IV.1: Both in the baseline risk-neutral model, and in the vari-
ation with logarithmic utility of Section III,22

(27) σηt →
Λ

σ
+O(σ),

21Risk shifting through asset substitution can lead to a similar effect. See Acharya and Viswanathan
(2011).

22The term O(σ) indicates that the difference limη→0 σ
η
t − Λ/σ converges to 0 at the same rate as σ

as σ → 0.
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as ηt → 0, where Λ = (a− a)/q + δ − δ.

The “volatility paradox” is consistent with the fact that the current crisis was
preceded by a low-volatility environment, referred to as the “Great Moderation.”
In other words, the system is prone to instabilities even when the level of aggregate
risk is low.
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Figure 7. Endogenous risk and risk premia for a = 0.07, 0.04, 0.01.

Market Illiquidity Determines Endogenous Risk

In a fully dynamic model, agents assess the likelihood of quick recovery against
the possibility that the system remains in depressed states for a long time. The
market liquidity of capital — the difference between its first-best value q̄ and its
value in alternative uses q — matters a lot for the level of endogenous risk. In
Figure 7, we vary the level of a, which directly affects the level of q. As q declines,

maximal endogenous risk σqt and risk premia in crisis states rise.
To sum up, small shocks can lead to unstable volatility dynamics in crisis states

owing to uncertainty about the future path of the economy. This mechanism for
amplification is significantly stronger than that of borrowing constraints, which
has been explored in BGG and KM and was the subject of the Kocherlakota
critique.

V. Borrowing Costs and Financial Innovations

In this section we explore the effect of borrowing costs on equilibrium dynamics.
Borrowing costs provide an additional incentive for experts to reduce leverage, on
top of the precautionary motives. We find that borrowing costs tend to stabilize
the system: They lead to lower endogenous risk and lower crisis probability. Con-
versely, financial innovations that lower borrowing costs lead to higher leverage
and may hurt system stability.

With borrowing costs, we are able to draw a more direct analogy to BGG, who
justify borrowing costs through a costly state verification framework, and KM,
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who impose an exogenous borrowing constraint. Given high enough borrowing
costs, the deterministic steady state of our system is no longer 0. We can discuss
amplification near the deterministic steady state in a meaningful way and replicate
the Kocherlakota critique. We also show once again that the Kocherlakota critique
does not apply in our setting, as the dynamics near the stochastic steady state
are different: It depends on the possibility of worst-case scenarios and does not
rely on the assumption of certain recovery back to the steady state.

Idiosyncratic Risk and Borrowing Costs

Next, we explore the impact of default risk on financial stability by adding
idiosyncratic jump risk to our baseline setting. With this risk, defaultable debt
implies a credit spread between risky loans and the risk-free rate.23

Formally, assume that capital kt managed by expert i evolves according to

(28) dkt = (Φ(ιt)− δ)kt dt+ σkt dZt + kt dJ
i
t ,

instead of (1). The new term dJ it is a compensated (i.e., mean zero) Poisson
process with intensity λ and jump distribution F (y), y ∈ [−1, 0] (if y = −1, the
expert’s entire capital is wiped out). Jumps are independent across experts and
cancel out in the aggregate, so that total capital evolves according to the same
equation as in the baseline model, (9). As in BGG, the jump distribution is the
same for all experts and does not depend on the balance sheet size.

Like BGG, we adopt the costly state verification framework of Townsend (1979)
to deal with default. If a sufficiently large jump arrives, such that the expert’s net
worth becomes negative, lenders trigger a costly verification procedure to make
sure that capital was really destroyed by a shock and not stolen. Verification
costs are proportional to the balance sheet size qtkt−.

24

We can solve for the equilibrium by following the same two steps that we took in
Section II. First, we extend conditions (H), (E), and (EK) to this setting. Second,
we derive the law of motion of the state variable ηt that drives the system.

Step 1. Levered experts have to compensate lenders for imperfect recovery
and deadweight losses of verification in the event of default. Both of these costs,
L(xt) and Γ(xt) respectively per dollar borrowed, are increasing in leverage xt
(with L(x) = Γ(x) = 0 if x ≤ 1). Function L(xt) depends on the intensity and
distribution of jumps, and Γ(xt) depends in addition on the verification costs.

23An interesting variation of this model allows borrowing costs to depend on volatility. This leads
to a value-at-risk (VaR) constraint as in Brunnermeier and Pedersen (2009) and Shin (2010). Recently,
models with such a constraint have been explored by Phelan (2012) and Adrian and Boyarchenko (2012).

24The basic costly state verification framework, developed by Townsend (1979) and adopted by BGG,
is a two-period contracting framework. At date 0, the agent requires investment I from the principal,
and at date 1 he receives random output ỹ distributed on the interval [0, ȳ]. The agent privately observes
output ỹ, but the principal can verify it at a cost. The optimal contract is a standard debt contract with
some face value D. If the agent receives ỹ ≥ D, then he pays the principal D and there is no verification.
The principal commits to verify if the agent reports that ỹ < D, and receives the entire output.
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The jump term adds dJ it to the experts’ return on capital drkt in (5), but does
not affect their expected return. Experts pay interest r + L(xt) + Γ(xt) on debt,
and so their net worth evolves according to

(29)
dnt
nt

= xt dr
k
t + (1− xt) (r + L(xt) + Γ(xt)) dt− dct/nt.

However, nt cannot become negative. If a jump puts nt into negative territory,
debt holders absorb the loss so that

(30) E[dnt/nt] = xtE[drkt ] + (1− xt) (r + Γ(xt)) dt− dct/nt.

Note the absence of (1 − xt)L(xt), the expected loss rate of debt holders due to
imperfect recovery. That is, because debt holders have to earn the expected return
of r, they charge a higher interest rate such that, effectively, the experts bear the
deadweight costs of verification, Γ(xt). In other words, experts’ expected cost of
borrowing is r + Γ(xt). Thus, the experts’ Bellman equation (12) is transformed
to

(EEK) ρ = µθ + max
x

(
xE[drkt ]/dt+ (1− x)(r + Γ(x)) + xσθ(σ + σqt )

)
This equation replaces (E) and (EK) in Proposition II.2, and it implies (E) and
(EK) if Γ(x) = 0, i.e., there are no verification costs. In equilibrium, xt = ψt/ηt
should solve the maximization problem in (EEK). As before, θt ≥ 1 and experts
consume only when θt = 1. The household optimal portfolio choice condition (H)
remains the same.

Step 2. Aggregating the experts’ net worth, equation (30) implies that

dNt = ψtqtKt dr
k
t − (ψtqtKt −Nt)(r + Γ(ψt/ηt)) dt− dCt.

With the extra term Γ(ψt/ηt), an analogue of Lemma II.3 leads to the formula
(31)
dηt
ηt

=
ψt − ηt
ηt

(drkt−rdt−Γ(ψt/ηt)dt−(σ+σqt )
2dt)+

a− ι(qt)
qt

dt+(1−ψt)(δ−δ)dt−dζt.

Figure 8 illustrates how expected verification costs of the form Γ(x) = max{ξ(x−
1), 0}, with ξ = 0, 0.01 and 0.02, affect equilibrium in the example of Section II.
The effects of borrowing frictions on equilibrium dynamics may seem surprising
at first. One may guess that these frictions, which make it harder for experts
to get funding, particularly in downturns, cause amplification effects to become
more severe.

In fact, the opposite is true: While borrowing frictions depress prices and in-
vestment, they actually lead to a more stable equilibrium. The amount of en-
dogenous risk σqt drops significantly as expert leverage decreases and prices in
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Figure 8. Equilibrium with verification spread Γ(x) = ξ(x− 1), ξ = 0, .01 and .02.

booms become lower. Phelan (2012) has also recently obtained a related result
that a stricter explicit leverage constraint leads to lower endogenous risk in crises
in equilibrium.

Conversely, instruments that reduce borrowing costs make the equilibrium less
stable.

Destabilizing Financial Innovation

Next, we explore the impact of financial innovations that allow experts to share
risk better and, in particular, hedge idiosyncratic risks. These products can
involve securitization, including pooling and tranching, credit default swaps, and
various options and futures contracts. We find that risk sharing among experts
reduces inefficiencies from idiosyncratic risk on one hand, but on the other hand
emboldens them to maintain smaller net worth buffers and attain higher leverage.
This leads to an increase of systemic risk. Ironically, tools intended for more
efficient risk management at the individual level may make the system less stable
overall.

Formally, assume that all shocks, including idiosyncratic jumps dJ it , are observ-
able and contractible among experts, but not between experts and households.
Then experts can trade insurance contracts that cover jump losses dJ it on expert
i’s capital. Experts can also trade contracts on the aggregate risk dZt.

PROPOSITION V.1: If experts can contract on all shocks among each other,
then the equilibrium in a setting with idiosyncratic shocks is equivalent to that in
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the baseline setting. Experts fully hedge their idiosyncratic risks, which carry the
risk premium of zero.

SKETCH OF PROOF:

Idiosyncratic risk of any expert i carries the risk premium of zero because it
can be fully diversified among other experts. Given that, experts choose to fully
insure their idiosyncratic risks, so their debt becomes risk-free. With borrowing
frictions eliminated, the laws of motion of ηt and functions q(η), θ(η), and ψ(η)
are the same as in the baseline setting with Γ(x) = 0. Contracts on aggregate
risk among experts do not change the equilibrium, as they do not alter the total
aggregate risk exposure of the expert sector.

When experts can trade contracts on idiosyncratic shocks, then they face the
cost of borrowing of only r, and equilibrium dynamics end up being the same as
in our baseline model. Thus, in the example of Figure 8, for any function Γ(x)
the equilibrium becomes transformed to that described by the solid plot, which
corresponds to the parameter ξ = 0.

Instruments that help experts share risks eliminate the deadweight losses of
costly state verification in this model. These instruments also lead to greater sys-
temic risk, because experts endogenously increase leverage by lowering their net
worth buffers. If instability harms the economy, e.g., due to (not yet modeled)
spillovers to other sectors (such as the labor sector), then financial innovations
may be detrimental to welfare. However, financial innovations are always welfare-
enhancing if accompanied by regulations that encourage experts to maintain ad-
equate net worth buffers (see Section VI).

The link between financial innovations and aggregate leverage has also been
illustrated concurrently by Gennaioli, Shleifer and Vishny (2012), who build a
two-period model in which agents ignore the possibility of certain bad events. In
particular, they interpret securitization as one important form of risk-sharing.

Comparison with BGG and KM

Deterministic steady state η0 is defined as the point at which the system remains
stationary in equilibrium in an economy without shocks, i.e., when σ = 0. Point
η0 may be different from the stochastic steady state η∗ even when σ is close to
0. That is, there may be a discontinuity at σ = 0. For example, in our baseline
model without verification costs, η0 = 0, i.e., the deterministic steady state is
degenerate, but limσ→0 η

∗ > 0. Point η∗ is determined taking into account that a
sequence of bad shocks may plunge the economy into a depressed region. This can
happen as a result of high endogenous risk, even when exogenous risk σ is low.
In contrast, η0 is determined as the balance point where earnings offset payouts
in a risk-free economy.

To compare deterministic and stochastic steady states, we use the following
proposition, which characterizes the location of η0 when η0 > 0.
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PROPOSITION V.2: Leverage x0 = 1/η0 at the non-degenerate deterministic
steady state of the model with idiosyncratic shocks is characterized by equation

(32) ρ− r = x0(x0 − 1)Γ′(x0) + Γ(x0),

and the price of capital is characterized by

(33) max
ι

a− ι
q0

+ Φ(ι)− δ = r + Γ(x0) + (x0 − 1)Γ′(x0).

PROOF:
When σ = 0, then σqt = σθt = 0 and system dynamics are deterministic. Taking

the first-order condition with respect to x in the Bellman equation (EEK), we get

(34) E[drkt ]/dt = r + Γ(x) + (x− 1)Γ′(x),

where x = ψ/η in equilibrium. Furthermore, at η0 we have µθt = 0, since it is
an absorbing state of the system. Using (34) and µθt = 0, the Bellman equation
(EEK) at η = η0 implies (32). Finally, since µq = 0 at η0, the left-hand side of
(33) is the expected return on capital, and so (34) implies (33).

Table 2 presents the location of stochastic and deterministic steady states for
several model parameters.

η∗ for σ = 10% σ = 5% σ = 1% σ = 0.1% σ = 0.01% η0

ξ = 0 0.4678 0.3291 0.1569 0.0994 0.0928 0
ξ = 0.01 0.7135 0.7086 0.7072 0.7071 0.7071 0.7071

Table 2— Stochastic steady states vs. deterministic steady state.

The location of the deterministic steady state depends on the borrowing costs.
Higher borrowing costs lead experts to accumulate more net worth, to reach
lower target leverage. Amplification near the deterministic steady state works as
follows. An unanticipated negative shock increases the experts’ cost of borrowing
and makes it harder to hold capital. The price of capital in response to the shock
has to drop sufficiently to generate enough demand for capital.

Kocherlakota (2000) argues that this mechanism cannot lead to large amplifi-
cation. Since the economy recovers to the steady state for sure, and the price
is known to rise to its original level, it takes only a small drop in price to make
capital attractive to hold again.

In contrast, amplification can be large in the fully dynamic equilibrium, partic-
ularly when exogenous risk σ is low (see Table 1). The economy is not known to
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recover for sure: The price may drop all the way to q. It is because of endogenous
risk that the stochastic steady state η∗ does not converge to 0 as σ → 0 even
when there are no verification costs (see Table 2). Experts keep net worth buffers
against endogenous risk even when exogenous risk is low.25

VI. Efficiency and Macroprudential Policies

Systemic instability and endogenous risk, created by financial frictions, do not
necessarily prescribe strict financial regulation. Making the system more stable
might stifle economic growth. To study financial regulation, one has to conduct
a welfare analysis. This section makes a first small step in this direction.

Within our model, the welfare of experts is ηtθ(ηt)q(ηt)Kt and that of house-
holds (1 − ηt)q(ηt)Kt. As discussed at the end of Section 3, the total welfare is
less than the first best of q̄Kt (because of capital misallocation, under-investment,
and consumption distortions). Endogenous risk during crises exacerbates many
of these inefficiencies. In addition, regulators may be concerned about inefficien-
cies outside our model, such as spillovers from the financial system to the labor
sector. If so, then the regulator may be concerned with the percentage of time
the system spends in states of capital misallocation (see Table 1).

In this section we investigate the effects of policies on the equilibrium outcome.
First, we show that there are policies that attain the first-best efficient outcome.
These policies generally require large transfers to and from the financial system,
or large open-market operations with financial assets. Second, we show that
policies, in which the regulator assumes only the tail risk, can improve welfare
significantly, particularly when exogenous risk is small and potential endogenous
risk is large. Third, we argue that small policy mistakes can have a huge effect
on the equilibrium outcome. Fourth, we investigate the effects of other natural
policies — capital requirements and restrictions on dividends — and show that
they may lead to unintended consequences.

Efficient Policies When Planner Can Control Consumption

A social planner can achieve the first-best outcome while respecting the same
financing frictions with respect to equity issuance that individual experts face. To
formalize this result, we define a set of constrained-feasible policies, under which

25Otherwise, there are only cosmetic differences between our model and those of BGG and KM,
as many features of those models can be captured by various versions of our framework. Instead of
introducing credit spreads, KM instead assume that the experts’ leverage cannot exceed x̄. This can
be captured in our model by setting Γ(x) = 0 on [0, x̄] and ∞ on (x̄,∞). This assumption leads to
a deterministic steady state of η0 = 1/x̄, at which experts lever up to the constraint. Shocks have
asymmetric effects near the deterministic steady state in KM: While negative shocks lead to amplification,
positive shocks lead to payouts. This also happens in our baseline model. In contrast, the model of BGG
is more similar to the version of our model with log utility (see Section III), as it reacts symmetrically to
small shocks near the stochastic steady state. The difference in discount rates of experts and households
in that model plays the same role as the exogenous exit rate of experts in BGG: it prevents the wealth
share of the expert sector from converging to 1.
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the central planner controls prices and the agents’ consumption and investment
choices, but treats all experts and households symmetrically.

Definition A symmetric constrained-feasible policy is described by stochastic
processes on the filtered probability space defined by the Brownian motion {Zt, t ≥
0}: The price process qt, investment rates ιt and ιt, capital allocations ψtKt and
(1− ψt)Kt, consumptions dCt and dCt, and transfers dτt such that

(i) representative expert net worth dNt = dτt+ψtKtqt dr
k
t −dCt stays nonneg-

ative,26

(ii) representative household net worth is defined by N t = qtKt −Nt, and

(iii) the resource constraints are satisfied, i.e.,

dCt + dCt
Kt

= (ψt(a−ιt)+(1−ψt)(a−ιt))dt,
dKt

Kt
= (ψt(Φ(ιt)−δ)+(1−ψt)(Φ(ιt)−δ))dt+σdZt.

Note that since the sum of net worth equals the total wealth in the economy
qtKt, aggregate transfers across both sectors are zero. The following proposition
characterizes constrained-feasible policies that achieve the first-best allocation.

PROPOSITION VI.1: Constrained-feasible policies that achieve a first-best out-
come are those that satisfy ψt = 1 and ιt = ι(q̄) for all t ≥ 0, and dCt = 0 for all
t > 0, although experts may consume positively at time 0, and transfers dτt are
chosen to keep the net worth of experts nonnegative.27

PROOF:
The policies outlined in Proposition VI.1 are constrained-feasible because the

experts’ net worth stays nonnegative. They attain first-best outcomes because
experts consume only at time 0, since all capital is always allocated to experts
and they are forced to invest at the first-best rate of ιt = ι(q̄).

Efficient Policies with Open-Market Operations

It turns out that it is possible to attain first best without controlling the
agents’ consumption and investment decisions, and even without direct trans-
fers of wealth. A social planner can recapitalize experts by creating an insurance

26Because of transfers, without loss of generality we set the risk-free rate to zero.
27One may wonder whether the suggested policies preserve incentive compatibility. According to

our microfoundation of balance sheets in Appendix A.A1, experts must retain full equity stakes in their
projects because otherwise they would divert some of the capital and use it in another firm, while original
outside equity holders suffer losses. Under any policy of Proposition VI.1, such a deviation would not
enhance the expert’s utility because the social planner controls the experts’ consumption and sets it to
zero for all t > 0. Even if experts could secretly consume diverted funds, the maximum amount that
an expert would be able to divert under the policy of Proposition VI.1, before his net worth becomes
negative, would be 0.
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asset that experts can use to hedge risks. The idea comes from Brunnermeier and
Sannikov (2012), where the insurance asset used to recapitalize intermediaries is
the long-term bond.

Suppose that the aggregate value of the insurance asset Pt follows

(35) dPt = rPt dt− ΣP
t dZt + ΣP

t σ
θ
t dt− dDt,

where−ΣP
t dZt is the aggregate risk of the asset and ΣP

t σ
θ
t is the experts’ insurance

premium. The social planner can create the cash flows dDt through open-market
operations, i.e., by issuing or repurchasing the asset in exchange for output, or
through dividends (if dDt > 0). These cash flows can be financed by taxing or
by selling the opposite end of the trade to households.28

As long as the process Pt satisfies the transversality condition limt→0E[e−rtPt] =
0, Pt correctly reflects the experts’ valuation of the asset with cash flows dDt.
Therefore, by controlling cash flows, the planner can endow the insurance asset
with any risk profile ΣP

t .

PROPOSITION VI.2: If the planner sets ΣP
t = (ψt − ηt)(σ + σqt )qtKt, then the

volatility of Nt is σ+σqt and the volatility of ηt is 0. In the Markov equilibrium, the
dynamics are deterministic with σqt = σθt = 0. Experts hold all capital, consume
their entire net worth at time 0, and maintain infinite leverage thereafter. The
price of capital is q̄.

PROOF:
Experts’ aggregate net worth Nt is exposed to risk ψt(σ + σqt )qtKt dZt from

capital. After the insurance asset hedges some of this risk, (σ + σqt )Nt dZt is
left. Ito’s lemma implies that the volatility of ηt is 0, and σqt = σθt = 0 trivially.
Because experts do not require any risk premium, they must hold all capital (as
they earn a higher return than households do) and earn a return of r on capital.
To maintain the transversality conditions, the price of capital must be q̄.

The policy of Proposition VI.2 achieves the first-best efficient outcome because
experts hold all capital, consume their entire net worth at time 0, and invest
efficiently. The policy may be confusing owing to degeneracy, but it is possible
to get arbitrarily close to first best with non-degenerate policies. Consider what
happens if the regulator also imposes the constraint that any expert’s portfolio
allocation to capital xt cannot exceed x̄ > 1. Then, with the policy of Proposition
VI.2 in place, the equilibrium dynamics are deterministic. The deterministic and
stochastic steady states coincide at η∗ = η0 = 1/x̄. At that point, experts must
be indifferent among all payout times, so they must earn the return of

(36) ρ = x̄

(
a− ι(q∗)

q∗
+ Φ(ι(q∗))− δ

)
+ (1− x̄)r

28In fact, if σθt < 0 and ΣPt > 0, then the regulator can make a profit on the trade by collecting the
insurance premium from experts.
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on their portfolios. Equation (36) determines the price level q∗ at the steady
state. As the regulator relaxes the leverage bound x̄, the outcome converges to
first best: η∗ converges to 0, the return on capital converges to r, and q∗ converges
to q̄.

Tail Risk Insurance

While the policy of Proposition VI.2 attains the first-best efficient outcome, it
requires the planner to be involved in asset markets continuously and to a large
extent. It turns out that when exogenous risk is low, but endogenous risk can
be potentially high, then the planner can come close to efficiency by providing
experts with only tail risk insurance.

For example, consider a policy that makes transfers dτt ≥ 0 to experts only
when ηt hits a lower bound η > 0, in such a way that the process ηt is reflecting

at η > 0. Transfers are proportional to the experts’ net worths.29 Figure 9 shows
the effects of the policy, for η = 0.002, on the example in Section 3 with σ = 0.1%.
The two left panels show that the policy raises the price of capital toward the
first-best price of q̄ = 1.2 and lowers endogenous risk significantly. The two right
panels show that while the cost of insurance to households is low, the policy
significantly improves welfare. Also, the market value of tail risk insurance to
experts is significantly higher than its cost to households. In addition, the policy
prevents inefficient reallocation of capital to households (not shown).
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Figure 9. Equilibrium with and without insurance.

In sum, the policies considered thus far are redistributive: They redistribute
wealth between experts and households based on information that these agents

29Under this policy, the equilibrium is characterized by the differential equations of Proposition II.4,
but with boundary conditions q′(η∗) = θ′(η∗) = 0, θ(η∗) = 1, q′(η) = 0, and θ′(η) = θ(η)/η. The last

boundary condition is least obvious; it ensures that the experts’ value function θ(ηt)nt does not jump
when the expert receives his share of the transfer dτt at ηt = η.
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cannot include directly in contracts that define the experts’ capital structure. It
is worthwhile to make a few remarks about these policies.

• Effectiveness: Tail risk insurance is effective (i.e., creates a large improve-
ment in welfare at low cost) only if it targets endogenous risk in environ-
ments with low fundamental (exogenous) risk. If we replicate the example
in Figure 9 with a higher level of exogenous risk σ = 1%, the policy is a lot
less effective: It raises q(η∗) from 1.111 to only 1.117.

• Policy mistakes: The equilibrium can be unforgiving to small policy mis-
takes. For example, tail risk insurance would fail to reduce endogenous risk
if it recapitalizes experts only partially when ηt falls below η. If so, then the
effect of the policy would be similar to a reduction in exogenous risk σ, and
endogenous risk would persist as we observed in Section IV. Likewise, any
other policy based on open-market operations (35) has to provide complete
insurance in order to be effective.

• Moral hazard: Tail risk insurance does not create significant moral hazard
if it makes transfers to experts proportionate to net worth. If so, most
benefits go to cautious experts, those who accumulated more net worth and
took lower leverage. The increase in leverage at the steady state due to the
policy reflects primarily the significant reduction in endogenous risk, rather
than the anticipation of insurance.

Other Policies

Many other policies have been proposed or implemented with the goal of im-
proving financial stability. Some, such as equity infusions, asset purchases, or
funding subsidies by the central bank (see Gertler and Kiyotaki (2011)), are aimed
at recapitalizing financial institutions in crises. Others are aimed at controlling
the overall risk within the financial system.

When considering policies, it is important to understand how they affect the
entire equilibrium. For that purpose, our framework provides a useful laboratory
to study the effects of policies on financial stability, on endogenous risk, on the
amount of time the system spends in crises, and on welfare. With the help of
our model, one can often identify unintended consequences of policies. While a
comprehensive theoretical study of policies is beyond the scope of this paper, here
we present several observations from our numerical experiments.30

• Leverage constraints: We considered a constraint that prohibits experts
from taking on leverage greater than x̄(η). Generally, experts respond to

30Note that, in our setting, experts cannot simply recapitalize themselves by issuing extra equity. Such
recapitalization goes against the agency microfoundations of balance sheets that we describe in Appendix
A.A1. However, experts could, in principle, hedge aggregate risks. Di Tella (2012) shows that this would
fully eliminate macroeconomic fluctuations, so instability in our model does depend on some aggregate
risks being unhedgeable.
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leverage constraints by accumulating net worth. On one hand, an increase
in η∗ can potentially stabilize the system and improve welfare. On the
other hand, leverage constraints also can create many inefficiencies through
capital misallocation and depressed prices that lead to underinvestment.

Our numerical experiments suggest that it is not easy to create welfare
improvements through leverage constraints. While small improvements
through carefully targeted policies are possible, crude bounds on leverage
are often counterproductive and reduce welfare.

• Restrictions on dividends: We also considered policies that force experts
to retain earnings and allow them to make payouts (proportionately to
net worth) only when ηt hits a critical level η̄. While a small restriction on
payouts tends to improve welfare slightly within the model, large restrictions
harm welfare. At the same time, there are a number of other consequences
(desirable and undesirable.) As experts are forced to retain more net worth,
the price of capital rises and may even become greater than q̄ at the steady
state. The marginal value of expert net worth θ(η) falls and becomes non-
monotonic near η̄. As a result, risk premia near η̄ become negative.31 Crisis
episodes become less frequent, but more severe. The maximal endogenous
risk in crises increases since prices have more room to fall.

VII. Conclusions

Events during the great liquidity and credit crunch of 2007-10 have highlighted
the importance of financing frictions for macroeconomics. Unlike many existing
papers in this field, our analysis is not restricted to local effects around the steady
state. Importantly, we show that endogenous risk due to adverse feedback loops
is significantly larger away from the steady state. This leads to nonlinearities:
Small shocks keep the economy near the stable steady state, but large shocks put
the economy in the unstable crisis regime characterized by liquidity spirals. The
economy is prone to instability regardless of the level of aggregate risk because
leverage and risk-taking are endogenous. As aggregate risk goes down, equilibrium
leverage goes up, and amplification loops in crisis regimes become more severe:
a volatility paradox. Owing to the volatility paradox, the Kocherlakota critique
does not apply in our model: In fact, amplification in crises can be unbounded in
low-volatility environments. In an environment with idiosyncratic and aggregate
risks, equilibrium leverage also increases with diversification and with financial
instruments that facilitate the hedging of idiosyncratic risks. Thus, paradoxically,
tools designed to better manage risks may increase systemic risk.

31As ηt gets close to η̄, θ(ηt) < 1 and experts wish they could pay out funds. At η̄, experts are able to
pay out some funds, and so θ(ηt) increases. However, payouts are restricted to being just sufficient for
ηt to reflect at η̄. The equilibrium is still characterized by the equations of Proposition II.4, but with the
boundary condition θ(η̄) + η̄θ′(η̄) = 1 instead of θ′(η∗) = 0 and θ(η∗) = 1. The new boundary condition
ensures that the experts’ value functions drop by the amount of payout at point η̄, when they are allowed
to consume.



VOL. VOLUME NO. ISSUE A MACROECONOMIC MODEL WITH A FINANCIAL SECTOR 43

Policy interventions can make crisis episodes less likely, although many seem-
ingly reasonable policies can harm welfare. Policies for crisis episodes alone, such
as those aimed at recapitalizing the financial system, can increase risk-taking
incentives ex ante. However, the effects of moral hazard are mitigated if these
policies benefit strong institutions more than the weak. Surprisingly, simple re-
strictions on leverage may do more harm than good, as they bind only in down-
turns and may have little impact on behavior in booms. Policies encouraging
financial institutions to retain earnings longer in booms do reduce the frequency
of crises, but may raise endogenous risk (by stimulating asset prices in booms)
and slow the recovery.
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Online Appendix

A1. Microfoundation of Balance Sheets and Intermediation

This section describes the connection between balance sheets in our model and
agency problems. Extensive corporate finance literature (see Townsend (1979),
Bolton and Scharfstein (1990), DeMarzo and Sannikov (2006), Biais et al. (2007),
or Sannikov (2012) for a survey of these models) suggests that agency frictions
increase when the agent’s net worth falls. In a macroeconomic setting, this logic
points to the aggregate net worth of end borrowers, as well as that of intermedi-
aries.

Incentive provision requires the agent to have some “skin in the game” in the
projects he manages. When projects are risky, it follows that the agent must
absorb some of project risk through net worth. Some of the risks may be iden-
tified and hedged, reducing the agent’s risk exposure. However, whenever some
aggregate risk exposures of constrained agents cannot be hedged, macroeconomic
fluctuations due to financial frictions arise, as these residual risks have aggregate
impact on the net-worth-constrained agents.

Our baseline model assumes the simplest form of balance sheets, in which con-
strained agents (experts) absorb all risk and issue just risk-free debt. Qualita-
tively, however, our results still hold if experts can issue some outside equity and
even hedge some of their risks, as long as they cannot hedge all the risks. Quan-
titatively, the assumption regarding equity issuance matters: If experts can issue
more equity or hedge more risks, then they can operate efficiently with much lower
net worths. This does not necessarily lead to a more stable system because, as we
saw in Section 5, the steady state in our model is endogenous. Agents who can
function with lower wealth accumulate lower net worth buffers. Thus, we expect
that our baseline model with simple balance sheets captures many characteristics
of equilibria of more general models.

To illustrate the connection between balance sheets and agency models, first,
we discuss the agency problem with direct lending from investors to a single agent.
Second, we illustrate agency problems that arise with intermediaries. In this case,
the net worth of intermediaries matters as well. At the end of this section, we
discuss contracting with idiosyncratic jump risk, which is relevant for Section 5.

Agency Frictions between an Expert and Households

Assume that experts are able to divert capital returns at rate bt ∈ [0,∞).
Diversion is inefficient: Of the funds bt diverted, an expert is able to recover only
a portion h(bt) ∈ [0, bt], where h(0) = 0, h′ ≤ 1, h′′ ≤ 0. Net of diverted funds,
capital generates the return of

drkt − bt dt
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and the expert receives an income flow of h(bt) dt.
If capital is partially financed by outside equity held by households, then house-

holds receive the return of
drkt − bt dt− ft dt,

where ft is the fee paid to the expert. When the expert holds a fraction ∆t of
equity, then per dollar invested in capital he gets

∆t(dr
k
t − bt dt) + (1−∆t)ft dt+ h(bt) dt.

The incentives with respect to diversion are summarized by the first-order condi-
tion ∆t = h′(bt), which leads to a weakly decreasing function b(∆) with b(1) = 0.
In equilibrium, the fee ft is chosen so that household investors get the expected
required return of r on their investment, i.e., ft = E[drkt ]/ dt − bt − r. As a re-
sult, the return on the expert’s equity stake in capital (including the benefits of
diversion) is

∆t(dr
k
t − bt dt) + (1−∆t)ft dt+ h(bt) dt

∆t
=
E[drkt ]− r dt

∆t
+rdt+(σ+σqt )dZt−

b(∆t)− h(b(∆t))

∆t
dt,

where b(∆t)−h(b(∆t))
∆t

is the deadweight loss rate due to the agency problem. The
law of motion of the expert’s net worth in this setting is of the form
(A1)
dnt
nt

= xt

(
E[drkt ]− r dt

∆t
+ r dt+ (σ + σqt ) dZt −

b(∆t)− h(b(∆t))

∆t
dt

)
+(1−xt)rdt−dζt,

where xt is the portfolio allocation to inside equity and dζt is the expert’s con-
sumption rate. It is convenient to view equation (A1) as capturing the issuance of
equity and risk-free debt. However, it is possible to reinterpret this capital struc-
ture in many other ways, since securities such as risky debt can be replicated by
continuous trading in the firm’s stock and risk-free debt.

Equation (EK) generalizes to

max
∆

E[drkt ]/dt− r − (b(∆)− h(b(∆)))

∆
= −σθt (σ + σqt )

and determines optimal equity issuance. Our results suggest that, as risk premia
E[drkt ]/dt − r rise in downturns, the experts’ equity retention ∆ decreases and
deadweight losses increase.32

Our baseline setting is a special case of this formulation, in which there are
no costs to the diversion of funds, i.e., h(b) = b for all b ≥ 0. In this case, the
agency problem can be solved only by setting ∆ = 1, i.e., experts can finance

32One natural way to interpret this is through a capital structure that involves risky debt, as it becomes
riskier (more equity-like) after experts suffer losses. Many agency problems become worse when experts
are “under water.”
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themselves only through risk-free debt. Our analysis can be generalized easily,
but for expositional purposes we keep our baseline model as simple as possible.

We would like to be clear about our assumptions regarding the space of accept-
able contracts, which specify how observable cash flows are divided between the
expert and household investors. We make the following two restrictions on the
contracting space:

A The allocation of profit is determined by the total value of capital, and
shocks to kt or qt separately are not contractible, and

B lockups are not allowed; at any moment of time, any party can break the
contractual relationship. The value of assets is divided among the parties
the same way, independently of who breaks the relationship.

Condition B simplifies analysis, as it allows us to focus only on expert net worth
rather than a summary of the expert’s individual past performance history. It as-
sumes a degree of anonymity, so that once the relationship breaks, parties never
meet again and the outcome of the relationship that just ended affects future
relationships only through net worth. This condition prevents commitment to
long-term contracts, such as in the setting of Myerson (2010). However, in many
settings this restriction alone does not rule out optimal contracts: Fudenberg,
Holmström and Milgrom (1990) show that it is possible to implement the opti-
mal long-term contract through short-term contracts with continuous marking-
to-market.

Condition A requires that contracts have to be written on the total return of
capital and that innovations in kt, qt, or the aggregate risk dZt cannot be hedged
separately. This assumption is clearly restrictive, but it creates a convenient and
simple way to capture important phenomena that we observe in practice. Specif-
ically, condition A creates an amplification channel, in which market prices affect
the agents’ net worth, and is consistent with the models of Kiyotaki and Moore
(1997) and Bernanke, Gertler and Gilchrist (1999). Informally, contracting di-
rectly on kt is difficult because we view kt not as something objective and static
like the number of machines, but rather something much more forward looking,
like the expected NPV of assets under a particular management strategy. More-
over, even though in our model there is a one-to-one correspondence between kt
and output, in a more general model this relationship could differ across projects,
depend on the expert’s private information, and be manipulable, e.g., through
underinvestment.

More generally, we could assume that aggregate shocks dZt to the experts’
balance sheets can be hedged partially. As long as it is impossible to design
a perfect hedge and to perfectly share all aggregate risks with households, the
model will generate economic fluctuations driven by the shocks to the net worth
of the constrained agents. Thus, to generate economic fluctuations, we make
assumptions that would otherwise allow agents to write optimal contracts, but
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place restrictions on hedging. Experts can still choose their risk exposure ∆t, but
cannot hedge aggregate shocks dZt.

Intermediary Sector

It is possible to reinterpret our model to discuss the capitalization of interme-
diaries as well as end borrowers.

One natural model of intermediation involves a double moral-hazard problem
motivated by Holmström and Tirole (1997). Let us, like Meh and Moran (2010)
separate experts into two classes of agents: entrepreneurs who manage capital
under the productive technology, and intermediaries who can channel funds from
households to entrepreneurs. Through costly monitoring actions that are unob-
servable by outside investors, intermediaries are able to reduce the benefits that
entrepreneurs get from the diversion of funds. Specifically, the entrepreneurs’
marginal benefit of fund diversion ∂

∂bh(bt|mt) is continuously decreasing with the

proportional cost of monitoring mt ≥ 0, i.e. ∂2

∂b∂mh(bt|mt) < 0. Thus, for a
fixed equity stake ∆t of the entrepreneur, higher monitoring intensity mt leads

to a lower diversion rate bt = b(∆t|mt). Assuming that ∂2

∂b2
h(·|mt) < 0, the en-

trepreneur’s optimal diversion rate bt is uniquely determined by the first-order
condition ∂

∂bh(bt|mt) = ∆t and is continuously decreasing in ∆t.

Intermediaries have no incentives to exert costly monitoring effort unless they
themselves have a stake in the entrepreneur’s project. An intermediary who
holds a fraction ∆I

t of the entrepreneur’s equity optimally chooses the monitoring
intensity mt that solves

min
m

∆I
t b(∆t|m) +m.

The solution to this problem determines how the rates of monitoring m(∆t,∆
I
t )

and cash flow diversion b(∆t,∆
I
t ) depend on the allocations of equity to the

entrepreneur and the intermediary.

By reducing the entrepreneurs’ agency problem through monitoring, interme-
diaries are able to increase the amount of financing available to entrepreneurs.
However, intermediation itself requires risk-taking, as the intermediaries need to
absorb the risk in their equity stake ∆I

t through their net worth. Thus, the ag-
gregate net worth of intermediaries becomes related to the amount of financing
available to entrepreneurs. Figure A1 depicts the interlinked balance sheets of
entrepreneurs, intermediaries, and households. Fraction ∆t + ∆I

t of entrepreneur
risk gets absorbed by the entrepreneur and intermediary net worths, while fraction
1−∆t −∆I

t is held by households.

The marginal values of entrepreneur and intermediary net worths, θt and θIt ,
can easily differ in this economy. If so, then the capital-pricing equation (EK)
generalizes to

max
∆,∆I

E[drkt ]/dt−r−(b(∆,∆I)−h(b(∆,∆I)))−m(∆,∆I)+(∆σθt+∆Iσθ,It )(σ+σqt ) = 0.
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Figure A1. Balance sheet structures of entrepreneurs and financial intermediaries.

Equilibrium dynamics in this economy depend on two state variables, the shares
of net worth that belong to the entrepreneurs ηt and intermediaries ηIt . Generally,
these are imperfect substitutes, as intermediaries can reduce the entrepreneurs’
required risk exposure by taking on risk and monitoring. However, several special
cases can be reduced to a single state variable. For example, if entrepreneurs and
intermediaries can write contracts on aggregate shocks among themselves (but
not with households), then the two groups of agents have identical risk premia

(i.e., σθt = σθ,It ) and the sum ηt + ηIt determines the equilibrium dynamics.

Contracting with Idiosyncratic Losses and Costly State Verification

Next, we discuss contracting in an environment of Section 5, where experts may
suffer idiosyncratic loss shocks. For simplicity, we focus on the simplest form of
the agency problem without intermediaries, in which h(b) = b for all b ≥ 0. As
discussed earlier in the Appendix, in our baseline model this assumption leads
to a simple capital structure, in which experts can borrow only through risk-free
debt.

Assume, as in Section 5, that, in the absence of benefit extraction, capital
managed by expert i ∈ I evolves according to

dkt = (Φ(ιt)− δ) kt dt+ σkt dZt + kt dJ
i
t ,

where dJ it is a compensated loss process with intensity λ and jump distribution
F (y), y ∈ [−1, 0]. Then, in the absence of jumps, J it has a positive drift of

dJ it =

(
λ

∫ 1

0
(−y)dF (y)

)
dt,
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so that E[dJ it ] = 0.
The entrepreneur can extract benefits continuously or via discrete jumps. Ben-

efit extraction is described by a non-decreasing process {Bt, t ≥ 0}, which changes
the law of motion of capital to

dkt = (Φ(ι)− δ) kt dt+ σkt dZt + kt dJ
i
t − dBt

and gives entrepreneur benefits at the rate of dBt units of capital. The jumps
in Bt are bounded by kt−, the total amount of capital under the entrepreneur’s
management just before time t.

Unlike in our earlier specification of the agency problem, in which the en-
trepreneur’s rate of benefit extraction bt = dBt

(qtkt) dt
must be finite, now the en-

trepreneur can also extract benefits discontinuously, including in quantities that
reduce the value of capital under management below the value of debt.

We assume a verification technology that can be employed in the event of
discrete drops in capital. In particular, if a verification action is triggered by
outside investors when capital drops from kt− to kt at time t, then investors

(i) learn whether a drop in capital was caused partially by the entrepreneur’s
benefit extraction at time t and in what amount,

(ii) recover all capital that was diverted by the entrepreneur at time t, and

(iii) pay a cost of (qtkt−)c(dJ it ), that is proportional to the value of the invest-
ment prior to verification33.

If verification reveals that the drop in capital at time t was partially caused by
benefit extraction, i.e., kt−(1 + dJ it ) > kt, then the entrepreneur cannot extract
any benefits, as diverted capital kt−(1 + dJ it )− kt is returned to the investors.

We maintain the same assumptions as before about the form of the contract
in the absence of verification, i.e., (A) the contract determines how the total
market value of assets is divided between the entrepreneur and outside investors,
and (B) at any moment either party can break the relationship and walk away
with its share of assets. In particular, contracting on kt or qt separately is not
possible. In addition, the contract specifies conditions, under which a sudden
drop in the market value of the expert’s assets qtkt triggers a verification action.
In this event, the contract specifies how the remaining assets, net of verification
costs, are divided among the contracting parties conditional on the amount of
capital that was diverted at time t. We assume that the monitoring action is not
randomized, i.e., it is completely determined by the asset value history.

PROPOSITION A.1: With idiosyncratic jump risk, it is optimal to trigger ver-
ification only in the event that the market value of the expert’s assets qtkt falls

33The assumption that the verification cost depends only on the amount of capital recovered, regardless
of the diverted amount, is without loss of generality since on the equilibrium path the entrepreneur does
not divert funds.
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below the value of debt. In the event of verification, it is optimal for debt holders
to receive the value of the remaining assets net of verification costs.

PROOF:

Because jumps are idiosyncratic, they carry no risk premium. Therefore, it is
better to deter fund diversion that does not bankrupt the expert by requiring him
to absorb jump risk through equity rather than triggering costly state verification
(which leads to a deadweight loss). However, verification is required to deter the
expert from diverting more funds than his net worth at a single moment of time.

The division of value between debt holders and the expert in the event of
verification matters for the expert’s incentives only if it is in fact revealed that
the expert diverted cash. If no cash was diverted (i.e. it is clear that the loss was
caused by an exogenous jump), the division of value between debt holders and
the expert can be arbitrary (as long as the expected return of debt holders, net
of verification costs, is r) since idiosyncratic jump risk carries no risk premium.
Without loss of generality we can assume that debt holders receive the entire
remaining value in case of verification.

Proposition A.1 implies that with idiosyncratic jump risk, debt is no longer
risk-free.

Stationary Distribution and Time to Reach

Suppose that Xt is a stochastic process that evolves on the state space [xL, xR]
according to the equation

(B1) dXt = µx(Xt) dt+ σx(Xt) dZt.

If, at time t = 0, Xt is distributed according to the density d(x, 0), then the
density of Xt at all future dates t ≥ 0 is described by the Kolmogorov forward
equation (see, e.g., Ghosh (2010)):

(B2)
∂

∂t
d (x, t) = − ∂

∂x
(µx (x) d (x, t)) +

1

2

∂2

∂x2

(
σx (x)2 d (x, t)

)
.

A stationary density is a function that solves (B2) and does not change with

time, i.e., ∂d(x,t)
∂t = 0 on the left-hand side of (B2). If so, then integration over x

yields the first-order ordinary differential equation

0 = F − µx(x)d(x) +
1

2

∂

∂x
(σx(x)2d(x)),

where the constant of integration F is the “flow” of the density in the positive
direction. If one of the endpoints of the interval [xL, xR] is reflecting (as η∗ in our
model), then the flow is F = 0.
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To compute the stationary density numerically, it is convenient to work with
the function D(x) = σx(x)2d(x), which satisfies the ODE

(B3) D′(x) = 2
µx(x)

σx(x)2
D(x).

Then d(x) can be found from D(x) using d(x) = D(x)
σx(x)2

.

With an absorbing boundary, the process Xt eventually ends up absorbed (and
so the stationary distribution is degenerate) unless the law of motion (B1) prevents
Xt from hitting the absorbing boundary with probability one. A non-degenerate
stationary density, with an absorbing boundary at xL, exists if the boundary
condition D(xL) = 0 can be satisfied together with D(x0) > 0 for x0 > xL. For
this to happen, we need

logD(x) = logD(x0)−
∫ x0

x

2µx(x′)

σx(x′)2
dx′ → −∞, as x→ xL,

i.e.,
∫ x0
xL

2µx(x)
σx(x)2

dx = ∞. This condition is satisfied whenever the drift µxt (x)

is positive near xL (i.e., it pushes Xt away from the boundary xL) and strong
enough working against the volatility that may move Xt toward xL. For example,
if Xt behaves as a geometric Brownian motion near the boundary xL = 0, i.e.,

µx(x) = µx and σx(x) = σx, with µ > 0, then
∫ x0

0
2µx(x)
σx(x)2

dx =
∫ x0

0
2µ
σ2x

dx =∞.
The following proposition characterizes the expected amount of time it takes

to reach any point x ≤ xR starting from xR.

PROPOSITION B.1: Suppose that Xt follows (B1) and xR is a reflecting bound-
ary. Then the expected amount of time g(x) that it takes to reach x ≤ xR from
xR solves equation

(B4) 1− g′(x)µx(x)− σx(x)2

2
g′′(x) = 0

with boundary conditions g(xR) = 0 and g′(xR) = 0.

PROOF:

Denote by fx0(y) the expected amount of time it takes to reach a point x0

starting from y ≥ x0. Then, to reach x0 from xR (expected time fx0(xR) = g(x0)),
one has to reach x ∈ (x0, xR) first (expected time g(x)) and then reach x0 from
x (additional expected time fx0(x)). Therefore,34

(B5) g(x) = g(x0)− fx0(x).

34Equation (B5) implies that, in expectation to reach any point x0 starting from x > x0, it takes time
g(x0)− g(x).
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Since t+ fx0(Xt) is a martingale, it follows that fx0 satisfies the ordinary differ-
ential equation

1 + f ′x0(x)µx(x) +
σx(x)2

2
f ′′x0(x) = 0.

Since g′(x) = −f ′x0(x) and g′′(x) = −f ′′x0(x), it follows that g must satisfy (B4).
It takes no time to reach xR from xR, so g(xR) = 0. Furthermore, since xR is a
reflecting barrier, due to volatility, g′(xR) = 0.

Proofs

PROOF OF LEMMA II.1:

Let us show that if the process θt satisfies (11) and the transversality condi-
tion holds, then θt represents the expert’s continuation payoff, i.e., satisfies (10).
Consider the process

Θt =

∫ t

0
e−ρsns dζs + e−ρtθtnt.

Differentiating Θt with respect to t using Ito’s lemma, we find

dΘt = e−ρt(nt dζt − ρθtnt dt+ d(θtnt)).

If (11) holds, then E[dΘt] = 0, so Θt is a martingale under the strategy {xt, dζt}.
Therefore,

θ0n0 = Θ0 = E[Θt] = E

[∫ t

0
e−ρsns dζs

]
+ E

[
e−ρtθtnt

]
.

Taking the limit t→∞ and using the transversality condition, we find that

θ0n0 = E

[∫ ∞
0

e−ρsns dζs

]
,

and the same calculation can be done for any other time t instead of 0.

Conversely, if θt satisfies (10), then Θt is a martingale since

Θt = Et

[∫ ∞
0

e−ρsns dζs

]
.

Therefore, the drift of Θt must be zero, and so (11) holds.

Next, let us show that the strategy {xt, dζt} is optimal if and only if the Bellman

equation (12) holds. Under any alternative strategy {x̂t, dζ̂t}, define

Θ̂t =

∫ t

0
e−ρsns dζ̂s + e−ρtθtnt, so that dΘ̂t = e−ρt(nt dζ̂t− ρθtnt dt+ d(θtnt)).
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If the Bellman equation (12) holds, then Θ̂t is a supermartingale under an arbi-
trary alternative strategy, so

θ0n0 = Θ̂0 ≥ E[Θ̂t] ≥ E
[∫ t

0
e−ρsns dζ̂s

]
.

Taking the limit t → ∞, we find that θ0n0 is an upper bound on the expert’s
payoff from an arbitrary strategy.

Conversely, if the Bellman equation (12) fails, then there exists a strategy

{x̂t, dζ̂t} such that

nt dζ̂t − ρθtnt dt+ E[d(θtnt)] ≥ 0,

with a strict inequality on the set of positive measures. Then, for large enough t,

θ0n0 = Θ̂0 < E[Θ̂t]

and so the expert’s expected payoff from following the strategy {x̂t, dζ̂t} until
time t, and {xt, dζt} thereafter, exceeds that from following {xt, dζt} throughout.

PROOF OF PROPOSITION II.2:

Using the laws of motion of θt and nt as well as Ito’s lemma, we can transform
the Bellman equation (12) into

ρθtntdt = max
x̂t≥0,dζ̂t≥0

(1−θt)ntdζ̂t+rθtntdt+ntEt[dθt]+x̂tθtnt
(
Et[dr

k
t ]− r dt+ σθt (σ + σqt ) dt

)
.

Assume that ntθt represents the expert’s maximal expected future payoff, so that
by Lemma II.1 the Bellman equation holds, and let us justify (i) through (iii).
The Bellman equation cannot hold unless 1 ≤ θt and Et[dr

k
t ]/dt − r + σθt (σ +

σqt ) ≤ 0, since otherwise the right-hand side of the Bellman equation can be

made arbitrarily large. If so, then the choices dζ̂t = 0 and x̂t = 0 maximize the
right-hand side, which becomes equal to rθtnt dt+ θtntµ

θ
t dt. Thus,

ρθtnt dt = rθtnt dt+ θtntµ
θ
t dt ⇒ (E).

Furthermore, any dζ̂t > 0 maximizes the right-hand side only if θt = 1, and x̂t > 0
does only if Et[dr

k
t ]/dt− r+σθt (σ+σqt ) ≤ 0. This proves (i) through (iii). Finally,

Lemma II.1 implies that the transversality condition must hold for any strategy
that attains value ntθt, proving (iv).

Conversely, it is easy to show that if (i) through (iii) hold, then the Bellman
equation also holds and the strategy {xt, dζt} satisfies (11). Thus, by Lemma II.1,
the strategy {xt, dζt} is optimal and attains value θtnt.

PROOF OF LEMMA II.3:
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Aggregating over all experts, the law of motion of Nt is

(C1) dNt = rNt dt+ ψtqtKt(dr
k
t − r dt)− dCt,

where Ct are aggregate payouts. Furthermore, note that d(qtKt)/(qtKt) are the
capital gains earned by a world portfolio of capital, with weight ψt on expert
capital and 1− ψt on household capital. Thus, from (5) and (6),

d(qtKt)

qtKt
= drkt −

a− ι(qt)
qt

dt︸ ︷︷ ︸
expert capital gains

− (1− ψt)(δ − δ) dt︸ ︷︷ ︸
adjustment for household−held capital

,

since household capital gains are less than those of experts by δ − δ. Using Ito’s
lemma,

d(1/(qtKt))

1/(qtKt)
= −drkt +

a− ι(qt)
qt

dt+ (1− ψt)(δ − δ) dt+ (σ + σqt )
2 dt.

Combining this equation with (C1) and using Ito’s lemma, we get

dηt = (dNt)
1

qtKt
+Nt d

(
1

qtKt

)
+ ψtqtKt(σ + σqt )

−1

qtKt
(σ + σqt ) dt =

(ψt − ηt)(drkt − r dt− (σ + σqt )
2 dt) + ηt

(
a− ι(qt)

qt
+ (1− ψt)(δ − δ)

)
dt− ηtdζt,

where dζt = dCt/Nt. If ψt > 0, then Proposition II.2 implies that E[drkt ]− r dt =
−σθt (σ + σqt ) dt, and the law of motion of ηt can be written as in (15).

PROOF OF PROPOSITION II.4:

First, we derive expressions for the volatilities of ηt, qt, and θt. Using (15), the
law of motion of ηt, and Ito’s lemma, the volatility of qt is given by

σqt q(η) = q′(η) (ψ − η)(σ + σqt )︸ ︷︷ ︸
σηt η

⇒ σqt =
q′(η)

q(η)

(ψ − η)σ

1− q′(η)
q(η) (ψ − η)︸ ︷︷ ︸
σηt η

.

The expressions for σηt and σθt follow immediately from Ito’s lemma.

Second, note that from (EK) and (H), it follows that

(C2)
a− a
q(η)

+ δ − δ + (σ + σqt )σ
θ
t ≥ 0,

with equality if ψ < 1. Moreover, when q(η), q′(η), θ(η) > 0 and θ′(η) < 0, then
σqt , σ

η
t > 0 are increasing in ψ while σθt < 0 is decreasing in ψ. Thus, the left-hand
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side of (C2) is decreasing from a−a
q(η) + δ − δ at ψ = η to −∞ at ψ = η + q(η)

q′(η) ,

justifying our procedure for determining ψ.
We get µηt from (15), µqt from (EK), and µθt from (E). The expressions for q′′(η)

and θ′′(η) then follow directly from Ito’s lemma and (15), the law of motion of ηt.
Finally, let us justify the five boundary conditions. First, because in the event

that ηt drops to 0 experts are pushed to the solvency constraint and must liquidate
any capital holdings to households, we have q(0) = q. The households are willing
to pay this price for capital if they have to hold it forever. Second, because η∗

is defined as the point where experts consume, expert optimization implies that
θ(η∗) = 1 (see Proposition 1). Third and fourth, q′(η∗) = 0 and θ′(η∗) = 0 are the
standard boundary conditions at a reflecting boundary. If one of these conditions
were violated, e.g., if q′(η∗) < 0, then any expert holding capital when ηt = η∗

would suffer losses at an infinite expected rate.35 Likewise, if θ′(η∗) < 0, then
the drift of θ(ηt) would be infinite at the moment when ηt = η∗, contradicting
Proposition 1. Fifth, if ηt ever reaches 0, it becomes absorbed there. If any expert
had an infinitesimal amount of capital at that point, he would face a permanent
price of capital of q. At this price, he is able to generate the return on capital of

a− ι(q)
q

+ Φ(ι(q))− δ > r

without leverage, and arbitrarily high return with leverage. In particular, with
high enough leverage this expert can generate a return that exceeds his rate of
time preference ρ, and since he is risk-neutral he can attain infinite utility. It
follows that θ(0) =∞.

Note that we have five boundary conditions required to solve a system of two
second-order ordinary differential equations with an unknown boundary η∗.

PROOF OF PROPOSITION III.2:
Since q′(η∗) = θ′(η∗) = 0, the drift and volatility of η at η∗ are given by

µηt (η
∗)η∗ = (1− η∗)σ2 +

a− ι(q(η∗))
q(η∗)

η∗ > 0 and σηt (η∗)η∗ = (1− η∗)σ.

Hence, D′(η∗) = 2µηt (η
∗)η∗/(σηt (η∗)η∗)2D(η∗) > 0, where D(η) = d(η)(σηt (η)η)2.

Furthermore, because in the neighborhood of η∗,

σηt (η)η =
(1− η)σ

1− (1− η)q′(η)/q(η)

is decreasing in η, it follows that the density d(η) must be increasing in η.

35To see intuition behind this result, if ηt = η∗ then ηt+ε is approximately distributed as η∗ − ω̄,

where ω̄ is the absolute value of a normal random variable with mean 0 and variance
(
σηt
)2
ε. As a

result, ηt+ε ∼ η∗ − σηt
√
ε, so q(η∗) − q′(η∗)σηt

√
ε. Thus, the loss per unit of time ε is q′(η∗)σηt

√
ε, and

the average rate of loss is q′(η∗)σηt /
√
ε→∞ as ε→ 0.
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The dynamics near η = 0 are more difficult to characterize because of the sin-
gularity there. We will do that by conjecturing, and then verifying, that asymp-
totically as η → 0,

µηt = µ̂+ o(1) and σηt = σ̂ + o(1),

i.e., ηt evolves as a geometric Brownian motion, and that

ψ(η) = Cψη + o(η), q(η) = q + Cqη
α + o(ηα), and θ(η) = Cθη

−β + o(η−β)

for some constants Cψ > 1, Cq, Cθ > 0, α, β ∈ (0, 1). We need to verify that the
equilibrium equations hold, up to terms of smaller order. Using the equations of
Proposition II.4, we have

σηt =
(Cψ − 1)σ + o(1)

1−O(ηα)
⇒ σ̂ = (Cψ − 1)σ,

σqt =
αCqη

α

q
σ̂ + o(ηα) = o(1), σθt = −βσ̂ + o(1),

(C3) (17) ⇒ βσ̂σ = Λ ⇒ σ̂ = (Cψ − 1)σ =
Λ

βσ
and

µ̂ = −σ̂(σ − βσ̂) +
a− ι(q)

q
+ δ − δ = − Λ

βσ

(
σ − Λ

σ

)
+
a− ι(q)

q
+ Λ.

We can determine µqt from the household valuation equation

a− ι(qt)
qt

+ Φ(ι(qt))− δ + µqt + σσqt = r

instead of that of experts, because we already took into account (17). By the
envelope theorem,

a− ι(q(η))

q(η)
+ Φ(q(η))− δ =

a− ι(q)
q

+ Φ(q)− δ︸ ︷︷ ︸
r

−
a− ι(q)
q2

(Cqη
α+o(ηα)) +o(ηα).

Therefore,

µqt =
a− ι(q)
q2

Cqη
α − αCqη

α

q
σ̂σ + o(ηα).

Our conjecture is valid if equations

µqq(η) = q′(η)µηt η +
1

2
q′′(η)(σηt η)2 and µθθ(η) = θ′(η)µηt η +

1

2
θ′′(η)(σηt η)2
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hold up to higher-order terms of o(ηα) and o(η−β), respectively. Ignoring those
terms, we need

a− ι(q)
q

Cqη
α − αCqηασ̂σ = αCqη

αµ̂+
1

2
α(α− 1)Cqη

ασ̂2 and

(C4) (ρ− r)Cθη−β = −βCθη−βµ̂+
1

2
β(β + 1)Cθη

−βσ̂2.

These equations lead to

a− ι(q)
q

− αΛ

β
= α

(
− Λ

βσ

(
σ − Λ

σ

)
+
a− ι(q)

q
+ Λ

)
+

1

2
α(α− 1)

Λ2

β2σ2
and

ρ− r = −β
(
− Λ

βσ

(
σ − Λ

σ

)
+
a− ι(q)

q
+ Λ

)
+

1

2
β(β + 1)

Λ2

β2σ2
⇒

(C5) α

(
Λ2

βσ2
+ Λ

)
+
a− ι(q)

q
(α− 1) +

1

2
α(α− 1)

Λ2

β2σ2
= 0 and

(C6) ρ− r = Λ− β
(
a− ι(q)

q
+ Λ

)
+

(1− β)Λ2

2βσ2

We can solve for β, Cψ, and α in the following order. First, equation (C6) has a
solution β ∈ (0, 1). To see this, note that, as β → 0 from above, the right-hand
side of (C6) converges to infinity. For β = 1, the right-hand side becomes

−
a− ι(q)

q
< 0.

We have a−ι(q) > 0, since the net rate of output that households receive at η = 0
must be positive. Second, equation (C3) determines the value of Cψ > 1 for any
β > 0. Lastly, equation (C5) has a solution α ∈ (0, 1). To see this, note that the
left-hand side is negative when α = 0 and positive when α = 1.

This confirms our conjecture about the asymptotic form of the equilibria near
η = 0. Arbitrary values of constants Cq and Cθ are consistent with these asymp-
totic dynamics. The value of Cq has to be chosen to ensure that functions q(η)
and θ(η) reach slope 0 at the same point η∗, and the Cθ, to ensure that θ(η∗) = 1.

We are now ready to characterize the asymptotic form of the stationary distri-
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bution near η = 0. We have D′(η) = 2µ̂/σ̂2 D(η)/η, so

(C7) D(η) = CD η
2µ̂/σ̂2

and d(η) = D(η)/(σ̂η)2 = Cd η
2µ̂/σ̂2−2.

Equation (C4) implies that

2(ρ− r)
σ̂2

= −β 2µ̂

σ̂2
+ β(β + 1) ⇒ 2µ̂

σ̂2
− 2 = β − 1− 2(ρ− r)

Λ2
σ2β.

We see that 2µ̂/(σ̂2) − 2 < 0, and so d(η) = Cd η
2µ̂/σ̂2−2 → ∞ as η → 0.

Furthermore, if

2µ̂

σ̂2
− 2 > −1 ⇔ 1− 2(ρ− r)

Λ2
σ2 > 0 ⇔ 2(ρ− r)σ2 < Λ2,

then the stationary density exists and has a hump near η = 0. Otherwise, if
2(ρ− r)σ2 ≥ Λ2, then the integral of d(η) is infinity, implying that the stationary
density does not exist and in the long run ηt ends up in an arbitrarily small
neighborhood of 0 with probability close to 1.

PROOF OF PROPOSITION III.3:

Boundary conditions (23) as well as equation (24) follow from the market-
clearing condition for consumption goods,

(C8) r(qtKt −Nt) + ρNt = (ψa+ (1− ψ)a− ι(qt))Kt.

Furthermore, since the volatilities of expert and household net worths are ψt
ηt

(σ+

σqt ) and 1−ψt
1−ηt (σ + σqt ), respectively, the portfolio optimization conditions imply

that

E[drkt−drt]/dt =
ψt
ηt

(σ+σqt )
2 and E[drkt−drt]/dt ≤

1− ψt
1− ηt

(σ+σqt )
2, with equality if ψt < 1.

As E[drkt −drkt ]/dt = (a−a)/qt+ δ− δ, these two conditions together imply that,
when ψt < 1,

(C9)
a− a
qt

+ δ − δ =

(
ψt
ηt
− 1− ψt

1− ηt

)
(σ + σqt )

2.

This leads to the first equation in (25). The second equation in (25) holds because,
as in the risk-neutral model,

σ + σqt =
σ

1− (ψt − ηt)q′(η)/q(η)
.
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Equations (26) hold because, by Lemma II.3,

dηt
ηt

=
ψt − ηt
ηt

(drkt − r dt− (σ + σqt )
2 dt) +

a− ι(qt)
qt

dt+ (1− ψt)(δ − δ) dt− ρ dt.

LEMMA C.1: Under the logarithmic utility model, the stationary density exists
if

2σ2(Λ + r − ρ) + Λ2 > 0

and has a hump at 0 if also ρ > r + Λ, where Λ = (a− a)/q(0) + δ − δ.

PROOF:

Note that asymptotically σqt → 0 as η → 0. Thus, from equation (C9),

ψt = ηt
Λ

σ2
+ o(ηt).

Therefore, equation (26) implies that

σηt =
Λ

σ
+ o(1) and µηt = (σηt )2 + Λ + r − ρ+ o(1).

The Kolmogorov forward equation (see (C7)) implies that asymptotically the
stationary density of ηt takes the form

d(η) = Cdη
βd , where βd = 2

(
µηt

(σηt )2
− 1

)
= 2σ2 Λ + r − ρ

Λ2
.

Thus, unlike in the risk-neutral case, the stationary density is nonsingular if
2σ2(Λ + r − ρ) + Λ2 > 0 and has a hump at 0 if ρ > r + Λ.

PROOF OF PROPOSITION IV.1:

From the proof of Lemma C.1,

ψt = ηt
Λ

σ2
+ o(ηt)

under logarithmic utility. Under risk neutrality,

ψt = Cψηt + o(ηt), where Cψ =
Λ

βσ2
+ 1.

The variable β is determined by equation (C6), which implies that β = 1 +O(σ2)
when σ is small. Thus,

ψt = ηt

(
Λ

σ2
+O(1)

)
+ o(ηt).
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In both cases,

σηt =
ψt − ηt
ηt

(σ + σqt ),

and σqt → 0 as η → 0. Thus,

σηt =
Λ

σ
+O(σ)

as η → 0.


