Institutional Finance Financial Crises, Risk Management and Liquidity

Markus K. Brunnermeier

Preceptor: Delwin Olivan

Princeton University

Traditional Finance

positive endowment shock

(unexpected pay raise)

 negative endowment shock (unexpected health expense)

Traditional Finance – Endowment Economy

 positive endowment shock (unexpected pay raise)

Income will rise negative endowment s

 negative endowment shock (unexpected health expense)

At what price/interest rate? Assumption: No frictions

Traditional Finance – Endowment Economy

- (incentive to smooth consumption)
- Risk aversion

Traditional Finance – Production Economy

Traditional "Banking Finance"

Traditional "Banking Finance"

Traditional "Banking Finance"

Modern "Institutional Finance"

(originate and distribute banking model)

Financially intermediated finance

• Focus on financial intermediaries (FIs)

- "economic agents who specialize in the activity of buying and selling (at the same time) financial claims" (Freixas and Rochet, p. 15).
- (Commercial) banks (savings institutions and credit unions): buy securities issued by borrowers (grant loans) and sell them to lenders (collect deposits)
- Brokers/Dealers: trade securities for their own account (dealer) or on behalf of their customers (broker)
- Related to Industrial Organization
- Transaction costs/ frictions
 - o "Friction-finance"

Total Financial Assets as % of GDP

I... and in Europe

Commercial Banks still have a larger fraction (universal banks)

Lending/Insuring vs. Trading

- Lending/Borrowing + Insuring
 - = trading assets/securities
 - o Bond
 - o Stock
 - Derivatives, e.g. CDS
 - At what price/rate?
 - How are different asset prices linked?
 - How do institutional investors constraint affect asset prices? (not only utility function of representative agent matters)

Pricing Principal |

- No risk-free Arbitrage
- Relative vs. Absolute Asset Pricing

How to deal with complexity?

- Subtasks
- Independence/separation results
- o Simplify
 - form models simplified pictures of reality
- Standardize

See Brunnermeier & Oehmke "Complexity in Financial Markets"

Abstraction – Event tree Г 0 3

Law of one Price, No risk-free Arbitrage

- Law of one price (LOOP)
 - Securities (strategies) with the same payoff in the future must have the same price today.
 - Price of actual security = price of synthetic security
- No (risk-free) Arbitrage
 - There does not exists an arbitrage strategy that costs nothing today, but yields non-negative and a strictly positive future payoff in at least one future state/event AND
 - There does not exist an arbitrage strategy that yields some strictly positive amount today and has non-negative payoffs at later point in time.
 - No Arbitrage → LOOP

Arbitrage Strategy

Static:

- acquire all positions at time t
- no retrades necessary

Dynamic:

- Future retrades are necessary for an arbitrage strategy
- Retrades depend on price movements

Bond - Simplest Event Tree

- A zero-coupon bond pays \$100 at maturity with no intermediate cashflows
- The future value (FV=\$100) and the present value (PV=bond price, B) are related by the following equation: PV x (1+r) = FV, where R is the periodic interest rate
- Equivalently, PV = FV / (1+r)
 - The bond price is: $B = \frac{100}{(1+r)}$

Bond Pricing Example

$$1 + r_{0,12} = (1 + r_{0,6})(1 + r_{6,12})$$

Law of One Price

Payoffs to purchasing the securities

	0	0.5	1
Long Bond	-B _{Long}	0	100
Short Bond	-B _{Short}	100	
Futures	0	-F	100

Suppose you want \$100 in one year

	0	0.5	1
Long Bond	-B _{Long}	0	100
Buy 1 long-term bond			

Alternatively			
	0	0.5	1
Short Bond	-B _{Short} x F/100	F	
Futures	0	-F	100
Net	-B _{Short} x F/100	0	100

2 ways of getting the same payoffs should have the same price:

 $B_{Short} \times F/100 = B_{Long}$

Synthetic Long-term Bond

- The pricing relation: B₁₂ = B₆ x F/100, can be rearranged to solve for any of the securities
 - The RHS represents a "synthetic" long-term bond (1 futures contract and F/100 short-term bonds)
- For example, $F = B_{12} / B_6 \times 100$
- If this pricing relation does not hold, then there is a risk-free profit opportunity
 - a risk-free arbitrage

Bond Pricing Example

- What if you observe the following prices:
 - Long Bond = \$94.50
 - Short Bond = \$95.00
 - Futures = \$98.00

A uk itua wa Tua da

Synthetic LBond = BShort x F/100 = \$93.10

Arbitrage Trade					
	0	0.5	1		
Sell 1 Long Bond	94.50	0.00	-100.00		
Buy 0.98 Short Bonds	-93.10	98.00	0.00		
Buy 1 Futures	0.00	-98.00	100.00		
Net	1.40	0.00	0.00		

Example in International Setting

- Any one of the following four securities:
 - Domestic bond
 - Foreign bond
 - Spot currency contract
 - Currency futures contract

can be replicated with the other three.

- Create a synthetic \$/£ futures contract using:
 - US bond = \$95
 - \circ UK bond = £96
 - Pounds spot = 1.50/f

Bid-Ask Spread - Market Liquidity

- What is the market price for a security?
 - Ask: the market price to buy
 - Bid or offer: the market price to sell
 - o prices at which market orders are executed
- If we view the midpoint as the "fair value", then
 ½ x (Ask-Bid) = transaction cost per unit traded
 - o A round-trip market order transaction will pay the full spread
- If the transaction size exceeds quantity being offered at the best bid or ask?
 - Transaction cost is an increasing function of order size
- UpTick records the difference between a trade's average transaction price and mid-price prevailing immediately prior to the trade as the trade's transaction cost.

Arbitrage with Bid-Ask Spread

- The law of one price holds exactly only for transactable prices (i.e. within the bounds)
- Pricing relation: BLong = BShort x F/100

$$B_{1-yr}^{Synthetic} = \frac{F}{100} \cdot B_{_{6-mo}}$$

Total cost of buying the Long Bond synthetically:

$$B_{1-yr}^{SyntheticASK} = \frac{F^{ASK}}{100} \cdot B_{6-mo}^{ASK}$$

Arbitrage with Bid-Ask Spread

- Buy and sell direct
- No arbitrage

- Buy direct; Sell synthetic
- No arbitrage

- Buy synthetic; sell direct
- Arbitrage

Margins limit arbitrage – Funding Liquidity

Positive size is limited

- Long an asset
 - m% * p * x · marked-to-market wealth
- o Short an asset
 - Sell asset, receive p = \$100
 - Put p + m%*p in margin account
 - Use up m%*p of your own financial wealth

Cross-Margining

- Netting: Only perfectly negatively correlated assets
- Portfolio margin constrained
 - If better hedge one can take larger positions

More on Margins – Funding Liquidity

- How much leverage should your broker allow you?
 - Depends on interest they charge risk they are willing to bear
- Most brokers charge an interest rate that is close to the Federal Funds rate (riskfree rate)
- Hence, from broker's perspective the loan must be close to riskfree (very small probability of you defaulting)
 - Broker requires equity cushion sufficient to keep the loan close to riskfree, subject to constraints imposed by the Federal Reserve and exchanges
 - **Cross-margining/Netting:** Most brokers give preferred margin terms to clients with low total portfolio risk
 - upTick requires 50% margin to initiate most equity and bond positions
 - upTick evaluates the overall risk of portfolios rebates some of the reserved equity for perfectly offsetting positions

More on Margins – Funding Liquidity

No constraints

\$

Initial Margin (50%) Reg. T 50 %

- Can't acquire new position;
- Not received a margin call.

Maintenance Margin (35%) NYSE/NASD

- Receive margin call
- Fixed amount of time to get to a specified point above the maintenance level before your position is liquidated.

25% long

30 % short

• Failure to return to the initial margin requirements within the specified period of time results in forced liquidation.

Minimum Margin (25%)⁻

• Immediate liquidated of position

Introduction to UpTick Software

Main Principles of Finance

- One principle per lesson see syllabus
- Focus on institutional features (frictions matter)
- "UpTick" Trading software developed by
 - Joshua Coval (HBS)
 - Eric Stafford (HBS)
 - If software breaks down, we will switch to a standard lecture
 - Student presentation (Masters students)

Philosophy of UpTick

- Price is affected by
 - o historical real price data
 - trading of students
 - Price is loosely anchored around real historical price data
 - 1. Computer traders/market makers find it more and more profitable to trade towards historical price the further price deviates from historical time series
 - 2. Signals reveal historical price x periods ahead
 - 3. Final liquidity value equals historical price
 - Realistic trading screen
 - Montage limit order book (shows bid-ask spread + market depth)
 - Event window
 - Personal Calculator (Excel)

Simulation – Law of One Price

Three simulations

- 1. Equal liquidity for all three assets
 - o 12-month bond
 - 6-month bond
 - Future
- 2. 12-month bond is less liquid
- 3. 6-month bond is less liquid
 + negative endowment in 6-month bond

Actual vs. synthetic 6-month bond

More about the simulations

- It's better to study synthetic short-term bond or futures contract (since every 6 months they converge to 100)
- Big jumps are created by computer traders.
 - Students should have noticed that short-term bond has to go to 100 after 6 months (expect a jump and trade very aggressively)
- Mispricing was sometimes up to \$4 be more aggressive.
- Quantity of trades
 - Average quantity for which the bid and ask was valid was 600 contracts
 - For roughly the next 200 contracts the price moved by 21 bp (.21 %)
 - Often there was significant mispricing (600 contracts make \$1 and for another 1200 contracts make .8\$ since price moves only .21%)
 - Effect of Cross-margining:
 - Creates incentive to perfectly hedged because one can take larger positions
 - Simulation with illiquid short-term bond and large short position:
 Idea get out of short-position by taking a long-position in synthetic short-term bond.