

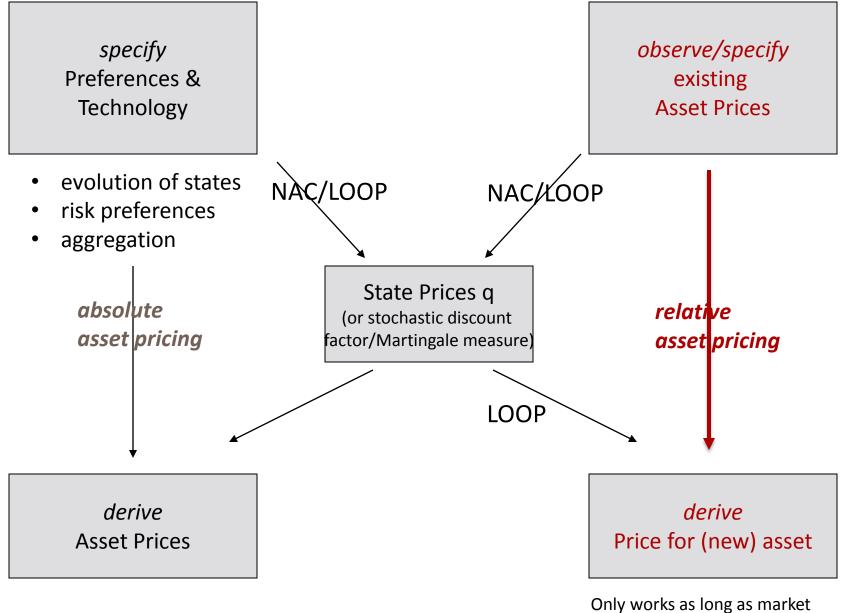
FIN501 Asset Pricing **Lecture 11** Multi Period Equilibrium Model (1)

Markus K. Brunnermeier

LECTURE 11: MULTI-PERIOD EQUILIBRIUM MODEL

PRINCETON UNIVERSITY

FIN501 Asset Pricing **Lecture 11** Multi Period Equilibrium Model (2)



completeness doesn't change

Time-varying R_t^* (SDF)

- If one-period SDF m_t is not time-varying (i.e. distribution of m_t is i.i.d., then
 - Expectations hypothesis holds
 - Investment opportunity set does not vary
 - Corresponding R* of single factor state-price beta model can be easily estimate (because over time one more and more observations about R*)
- If not, then m_t (or corresponding R_t^*)
 - depends on state variable
 - multiple factor model

R_t^* depends on State Variable

- $R_t^* = R^*(z_t)$, with state variable z_t
- Example:
 - $-z_t = 1$ or 2 with equal probability
 - Idea:
 - Take all periods with $z_t = 1$ and figure out $R^*(1)$
 - Take all periods with $z_t = 2$ and figure out $R^*(2)$
 - Can one do that?
 - No hedge across state variables
- Potential state-variables: predict future return

Dynamic Hedging Demand

- Trade-off
 - Low return realization in next period
 - Good since opportunity going forward is high
 ➢ Invest more
 - ➢Bad since marginal utility is high
 - Consume and invest less
 - High return realization in next period
- Utility
 - $\gamma > (<)1$ first (second) effect dominates
 - $\gamma = 1$ (log-utility) both effects offset each other

(Dynamic) Hedging Demand

- Illustration with noise trader risk:
 - Suppose fundamental value is constant v=1, but price is noisy (due to noise traders)
 - If the asset is underpriced, e.g. p=.9, then it might be even more underpriced in the next period
 - Myopic risk-averse investor: buy some of the asset and push price towards 1, but not fully
 - Forward-looking risk-averse investor: yes, there can be intermediate losses if price declines in next period, but then **investment opportunity set** improves even more i.e. if returns are bad, then I have great opportunity (dynamic hedge)

Static problem = intertemporal problem

- In general ICAPM setting
 - CRRA with $\gamma \neq 1$ and changing investment opportunity sets
- Special cases
 - 1. CRRA and i.i.d. returns and constant r^f
 - SR and LR investors have the same portfolio weights.
 - Fraction of savings that is invested in asset *j* is timeinvariant (Merton 1971)
 - 2. Log utility and non-i.i.d. returns \Rightarrow same result

Conditional vs. unconditional CAPM

- If β of each subperiod CAPM are timeindependent, then conditional CAPM = unconditional CAPM
- If β s are time-varying they may co-vary with R_m and hence CAPM equation does not hold for unconditional expectations.
 - Additional co-variance terms have to be considered!
 - Move from single-factor setting to multi-factor setting

Intertemporal CAPM (ICAPM)

- Merton (1973)
- Bellman equation
 V(W_t, z_t) = max_c{u(c_t) + δE_t[V(W_{t+1}, z_{t+1})}
 where W_{t+1} = R^W_{t+1}(W_t c_t) with R^W_{t+1} for optimal portfolio

 FOC:

$$- 0 = u'(c_t) - \delta E_t [V_W(W_{t+1}, z_{t+1}) R_{t+1}^W] - \text{Since } V_W(W_t, z_t) = \delta E_t [V_W(W_{t+1}, z_{t+1}) R_{t+1}^W], \quad \text{(envelope theorem)}$$

$$u'(c_t) = V_W(W_t, z_t) \ \forall t$$

Deriving ICAPM

- Hence one period pricing equation $E[R_{t+1}^{j}] - R_{t+1}^{f} = -Cov_{t}[\frac{u'(c_{t+1})}{E[u'(c_{t+1})]}, R_{t+1}^{j}]$
 - Becomes $E[R_{t+1}^{j}] - R_{t+1}^{f}$ $= -\frac{Cov_{t}[V_{W}(W_{t+1}, z_{t+1}), R_{t+1}^{j}]}{E_{t}[V_{W}(W_{t+1}, z_{t+1})]}$

Deriving ICAPM: First order Approximation

- Around $V_W(W_t, z_t)$
- $V_W(W_{t+1}, z_{t+1})$ $\approx V_W(W_t, z_t) + V_{WW}(W_t, z_t)\Delta W_{t+1} + V_{WZ}(W_t, z_t)\Delta z_t$
- One obtains
- $E[R_{t+1}^j] R_{t+1}^f$
- $= -\gamma Cov_t \left[\Delta W_{t+1}, R_{t+1}^j\right] + \frac{V_{Wz}}{E_t[V_W]} Cov_t \left[\Delta z_{t+1}, R_{t+1}^j\right]$
 - $-\gamma$ is relative risk aversion coefficient of V
 - Second term is additional "risk factor"

Approximate ICAPM Campbell

CRRA Agent

$$\Rightarrow 1 = E_t \left[\delta \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} R_{j,t+1} \right]$$

- 2nd order Taylor Approximation, where $V_{cc} \equiv \operatorname{var}_t[\Delta c_{t+1}] = \operatorname{var}[\Delta c_{t+1} - E_t \Delta c_{t+1}]$ etc. $0 = \log \delta - \gamma E_t \Delta c_{t+1} + E_t r_{j,t+1} + \frac{1}{2} [\gamma^2 V_{cc} + V_{jj} - 2\gamma V_{cj}]$
- Note that this implies $E_t[\Delta c_{t+1}] = \mu_m + \frac{1}{\nu} E_t[r_{m,t+1}]$

- With
$$\mu_m = \frac{1}{\gamma} \log[\delta] + \frac{1}{2} \left[\gamma V_{cc} + \frac{1}{\gamma V_{mm}} - 2V_{cm} \right]$$

- $= \frac{1}{\gamma} \log[\delta] + \frac{1}{2} \gamma \operatorname{var}_t \left[\Delta c_{t+1} - \sigma r_{m,t+1} \right]$

Consumption

• Budget constraint

$$W_{t+1} = R_{m,t+1}(W_t - C_t) \Rightarrow \frac{W_{t+1}}{W_t} = R_{m-t+1}\left(1 - \frac{C_t}{W_t}\right)$$

- In logs $\Delta w_{t+1} = r_{m,t+1} + \log[1 \exp(c_t w_t)]$
- 1st Order Taylor Approximation (1) $\log[1 - \exp[x_t]] \approx \log[1 - \exp[\bar{x}]] - \frac{\exp[\bar{x}]}{1 - \exp[\bar{x}]}(x_t - \bar{x})$ $\Delta w_{t+1} \approx r_{m,t+1} + k + (1 - \rho^{-1})(c_t - w_t)$ Where $\rho \equiv 1 - \exp(\bar{c} - \bar{w})$

Consumption Innovations

- Since $\Delta w_{t+1} = \Delta c_{t+1} + (c_t w_t) (c_{t+1} w_{t+1})$ (Simply an identity) $\Rightarrow c_t - w_t = \sum_{k=1}^{\infty} \rho^{\tau} (r_{m,\tau+j} - \Delta c_{t+\tau}) + \frac{\rho k}{1 - \rho}$
- Taking expectations on both sides yields (2)

$$c_t - w_t = E_t \left[\sum_{\tau=1}^{\infty} \rho^{\tau} \left(r_{m,\tau+j} - \Delta c_{t+\tau} \right) + \frac{\rho k}{1 - \rho} \right]$$

• Combining (1) and (2) $c_{t+1} - E_t c_{t+1}$

$$= (E_{t+1} - E_t) \sum_{\tau=0}^{\infty} \rho^{\tau} r_{m,t+1+\tau} - (E_{t+1} - E_t) \sum_{\tau=1}^{\infty} \rho^{\tau} \Delta c_{t+1+\tau}$$

Consumption Innovations

• Combining previous result with $E_t[\Delta c_{t+1}] = \mu_m + \frac{1}{\nu} E_t[r_{m,t+1}]$

$$\Rightarrow c_{t+1} - E_t c_{t+1}$$

= $r_{m,t+1} - E_t r_{m,t+1} + \left(1 - \frac{1}{\gamma}\right) (E_{t+1} - E_t) \sum_{\tau=0}^{\infty} \rho^{\tau} r_{m,t+1+\tau}$

- Finally, this implies that $V_{jc} = V_{jm} + \left(1 \frac{1}{\nu}\right)V_{jh}$
 - Here, we define $V_{ih} = \text{cov}_t [r_{j,t+1}, (E_{t+1} E_t) \sum_{\tau=0}^{\infty} \rho^{\tau} r_{m,t+1+\tau}]$
 - This is the covariance of the asset with a "hedge" portfolio

ICAPM

 For a risk-free asset the log-Euler equation simplifies to

$$0 = \log \delta - \gamma E_t \Delta c_{t+1} + r_{f,t+1} + \frac{1}{2} \gamma^2 V_{cc}$$

- Then we can write the Consumption CAPM $E_t r_{j,t+1} - r_{f,t+1} = -\frac{V_{jj}}{2} + \gamma V_{jc}$
- And finally the Intertemporal CAPM

$$E_t r_{j,t+1} - r_{f,t+1} = -\frac{V_{jj}}{2} + \gamma V_{jm} + (\gamma - 1) V_{jh}$$