Markus K. Brunnermeier

LECTURE 06: SHARPE RATIO, BONDS, \& THE EQUITY PREMIUM PUZZLE

Money, Bonds vs. Stocks

Sharpe Ratios and Bounds

- Consider a one period security available at date t with payoff x_{t+1}. We have

$$
p_{t}=E_{t}\left[m_{t+1} x_{t+1}\right]
$$

or

$$
p_{t}=E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]+\operatorname{cov}\left[m_{t+1}, x_{t+1}\right]
$$

- For a given m_{t+1} we let $R_{t+1}^{f}=\frac{1}{E_{t}\left[m_{t+1}\right]}$
- Note that R_{t++}^{f} will depend on the choice of m_{t+1} unless there exists a riskless portfotio
$-R_{t+1}$ is the return from t to $t+1$, typically measurable w.r.t. \mathcal{F}_{t+1}. (An exception is R^{f}, which is measurable w.r.t. \mathcal{F}_{t}, but we stick with subscript $t+1$.)

Sharpe Ratios and Bounds (ctd.)

- Hence

$$
p_{t}=\underbrace{\frac{1}{R_{t+1}^{f}} E_{t}\left[x_{t+1}\right]}_{\text {Expected PV }}+\underbrace{\operatorname{cov}\left[m_{t+1}, x_{t+1}\right]}_{\text {Risk Adjustment }}
$$

- Positive correlation with the discount factor adds value, i.e. decreases required return

in Returns

$$
E_{t}\left[m_{t+1} x_{t+1}\right]=p_{t}
$$

- Divide both sides by p_{t} and note that $\frac{x_{t+1}}{p_{t}}=R_{t+1}$

$$
E_{t}\left[m_{t+1} R_{t+1}\right]=1
$$

- Using $R_{t+1}^{f}=1 / E_{t}\left[m_{t+1}\right]$, we obtain

$$
E_{t}\left[m_{t+1}\left(R_{t+1}-R_{t+1}^{f}\right)\right]=0
$$

- m-discounted expected excess return for all assets is zero.

in Returns

- Since $E_{t}\left[m_{t+1}\left(R_{t+1}-R_{t+1}^{f}\right)\right]=0$

$$
\begin{aligned}
& \operatorname{cov}_{t}\left[m_{t+1}, R_{t+1}-R_{t+1}^{f}\right] \\
& \quad=-E_{t}\left[m_{t+1}\right] E_{t}\left[R_{t+1}-R_{t+1}^{f}\right]
\end{aligned}
$$

- That is, risk premium or expected excess return

$$
E_{t}\left[R_{t+1}-R_{t+1}^{f}\right]=-\frac{\operatorname{cov}_{t}\left[m_{t+1}, R_{t+1}\right]}{E_{t}\left[m_{t+1}\right]}
$$

is determined by its covariance with the stochastic discount factor

Sharpe Ratio

- Multiply both sides with portfolio h

$$
\begin{gathered}
E_{t}\left[\left(R_{t+1}-R_{t+1}^{f}\right) h\right]=-\frac{\operatorname{cov}_{t}\left[m_{t+1}, R_{t+1} h\right]}{E_{t}\left[m_{t+1}\right]} \\
E_{t}\left[\left(R_{t+1}-R_{t+1}^{f}\right) h\right]=-\frac{\rho\left(m_{t+1}, R_{t+1} h\right) \sigma\left(R_{t+1} h\right) \sigma\left(m_{t+1}\right)}{E_{t}\left[m_{t+1}\right]}
\end{gathered}
$$

- NB: All results also hold for unconditional expectations $E[\cdot]$
- Rewritten in terms of Sharpe Ratio $=$...

$$
-\frac{\sigma\left(m_{t+1}\right)}{E\left[m_{t+1}\right]} \rho\left(m_{t+1}, R_{t+1} h\right)=\frac{E\left[\left(R_{t+1}-R_{t+1}^{f}\right) h\right]}{\sigma\left(R_{t+1} h\right)}
$$

Hansen-Jagannathan Bound

- Since $\rho \in[-1,1]$ we have

$$
\frac{\sigma\left(m_{t+1}\right)}{E\left[m_{t+1}\right]} \geq \sup _{h}\left|\frac{E\left[\left(R_{t+1}-R_{t+1}^{f}\right) h\right]}{\sigma\left(R_{t+1} h\right)}\right|
$$

- Theorem (Hansen-Jagannathan Bound):

The ratio of the standard deviation of a stochastic discount factor to its mean exceeds the Sharpe Ratio attained by any portfolio.

Hansen-Jagannathan Bound

- Theorem (Hansen-Jagannathan Bound): The ratio of the standard deviation of a stochastic discount factor to its mean exceeds the Sharpe Ratio attained by any portfolio.
- Can be used to easy check the "viability" of a proposed discount factor
- Given a discount factor, this inequality bounds the available risk-return possibilities
- The result also holds conditional on date t info

Hansen-Jagannathan Bound

Assuming Expected Utility

- $c_{0} \in \mathbb{R}, c_{1} \in \mathbb{R}^{S}$
- $U\left(c_{0}, c_{1}\right)=\sum_{s} \pi_{s} u\left(c_{0}, c_{1, s}\right) U\left(\mathrm{c}_{0}, \mathrm{c}_{1}\right)$

$$
\begin{aligned}
& \partial_{0} u=\left(\frac{\partial u\left(c_{0}^{*}, c_{1,1}^{*}\right)}{\partial c_{0}}, \ldots, \frac{\partial u\left(c_{0}^{*}, c_{1, S}^{*}\right)}{\partial c_{0}}\right) \\
& \partial_{1} u=\left(\frac{\partial u\left(c_{0}^{*}, c_{1,1}^{*}\right)}{\partial c_{1,1}}, \ldots, \frac{\partial u\left(c_{0}^{*}, c_{1, S}^{*}\right)}{\partial c_{1, S}}\right)
\end{aligned}
$$

- Stochastic discount factor

$$
m=\frac{\mathrm{MRS}}{\pi}=\frac{\partial_{1} u}{E\left[\partial_{0} u\right]} \in \mathbb{R}^{S}
$$

Time-Separable

- Digression: if utility is in addition time-separable

$$
u\left(c_{0}, c_{1}\right)=v\left(c_{0}\right)+v\left(c_{1}\right)
$$

- Then

$$
\begin{gathered}
\partial_{0} u=\left(\frac{\partial v\left(c_{0}^{*}\right)}{\partial c_{0}}, \ldots, \frac{\partial v\left(c_{0}^{*}\right)}{\partial c_{0}}\right) \\
\partial_{1} u=\left(\frac{\partial v\left(c_{1,1}^{*}\right)}{\partial c_{1,1}}, \ldots, \frac{\partial v\left(c_{1, S}^{*}\right)}{\partial c_{1, S}}\right)
\end{gathered}
$$

- And

$$
m_{s}=\frac{1}{\pi_{s}} \frac{\pi_{s} v^{\prime}\left(c_{1, s}\right)}{v^{\prime}\left(c_{0}\right)}=\frac{v^{\prime}\left(c_{1, s}\right)}{v^{\prime}\left(c_{0}\right)}
$$

A simple example

- $S=2, \pi_{1}=\frac{1}{2}$
- 3 securities with $x^{1}=(1,0), x^{2}=(1,0), x^{3}=(1,1)$
- Let $m=\left(\frac{1}{2}, 1\right), \sigma=\frac{1}{4}=\sqrt{\frac{1}{2}\left(\frac{1}{2}-\frac{3}{4}\right)^{2}+\frac{1}{2}\left(1-\frac{3}{4}\right)^{2}}$
- Hence, $p^{1}=\frac{1}{4}, p^{2}=\frac{1}{2}=p^{3}=\frac{3}{4}$ and
- $R^{1}=(4,0), R^{2}=(0,2), R^{3}=\left(\frac{4}{3}, \frac{4}{3}\right)$
- $E\left[R^{1}\right]=2, E\left[R^{2}\right]=1, E\left[R^{3}\right]=\frac{4}{3}$

Example: Where does SDF come from?

- "Representative agent" with
- Endowment: 1 in date $0,(2,1)$ in date 1
- Utility $E U\left(c_{0}, c_{1}, c_{2}\right)=\sum_{s} \pi_{s}\left(\ln c_{0}+\ln c_{1, s}\right)$
- i.e. $u\left(c_{0}, c_{1, s}\right)=\ln c_{0}+\ln c_{1, s}$ (additive) time separable ufunction
- $m=\frac{\partial_{1} u(1,2,1)}{E\left[\partial_{0} u(1,2,1)\right]}=\left(\frac{c_{0}}{c_{1,1}}, \frac{c_{0}}{c_{1,2}}\right)=\left(\frac{1}{2}, \frac{1}{1}\right)=\left(\frac{1}{2}, 1\right)$
since endowment=consumption
- Low consumption states are high "m-states"
- Risk-neutral probabilities combine true probabilities and marginal utilities.

Equity Premium Puzzle

- Recall $E\left[R^{i}\right]-R^{f}=-R^{f} \operatorname{cov}\left[m, R^{i}\right]$
- Now: $E\left[R^{j}\right]-R^{f}=-\frac{R^{f} \operatorname{cov}\left[\partial_{1} u, R^{j}\right]}{E\left[\partial_{0} u\right]}$
- Recall Hansen-Jaganathan bound

$$
\begin{aligned}
& \frac{\sigma(m)}{E[m]} \geq\left|\frac{E\left[R-R^{f}\right]}{\sigma(R)}\right| ; E[m]=\frac{1}{R^{f}} \\
& \sigma(m) \geq \frac{1}{R^{f}}\left|\frac{E\left[R-R^{f}\right]}{\sigma(R)}\right|
\end{aligned}
$$

Equity Premium Puzzle (ctd.)

$$
\sigma\left(\frac{\partial_{1} u}{E\left[\partial_{0} u\right]}\right) \geq \frac{1}{R^{f}}\left|\frac{E\left[R-R^{f}\right]}{\sigma(R)}\right|
$$

Equity Premium Puzzle

- high observed Sharpe ratio of stock market indices
- low volatility of consumption
- \Rightarrow (unrealistically) high level of risk aversion

Equity Premium or Low Risk-free Rate Puzzle?

- Suppose we allow for sufficiently high risk aversion s.t. $\sigma\left(\frac{\partial_{1} u}{E\left[\partial_{0} u\right]}\right) \geq \frac{1}{R^{f}}\left|\frac{E\left[R-R^{f}\right]}{\sigma(R)}\right|$
- New problem emerges:
- Strong force to consumption smooth over time (low intertemporal elasticity of consumption (IES)) due to concavity of utility function
- vNM utility function
- smoothing over states = smoothing over time
- CRRA gamma = 1/ IES
- Model predicts much higher risk-free rate

Equity Premium or

Low Risk-free Rate Puzzle?

- Solution:
- depart from vNM utility preference representation
- Found preference representation that allows split
- Risk-aversion
- Intertemporal elasticity of substitution
- Kreps-Porteus (special case: vNM)
- Epstein-Zin (special case: CRRA vNM)

Digression: Preference for the timing of uncertainty resolution

$$
U_{0}\left(x_{1}, x_{2}(s)\right)=W\left(x_{1}, E\left[U_{1}\left(x_{1}, x_{2}(s)\right)\right]\right)
$$

Early (late) resolution if $\mathrm{W}\left(\mathrm{P}_{1}, \ldots\right)$ is convex (concave)

Do you want to know whether you will get cancer at the age of 55 now?

