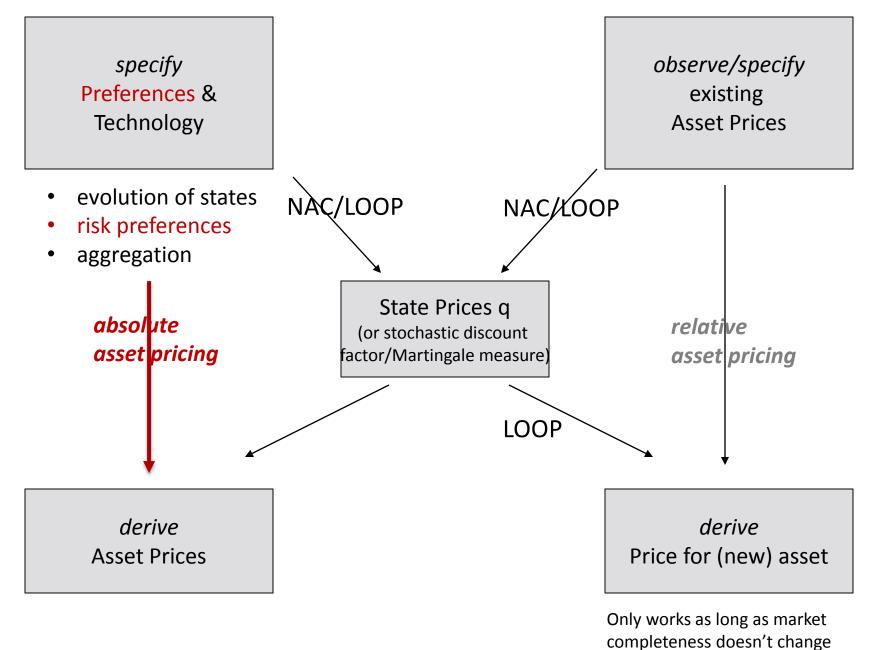


Markus K. Brunnermeier

LECTURE 4: RISK PREFERENCES & EXPECTED UTILITY THEORY

PRINCETON UNIVERSITY FIN501 Asset Pricing Lecture 04 Risk Prefs & EU (2)



Overview: Risk Preferences

1.	State-by-state dominance	
2.	Stochastic dominance	[DD4]
3.	vNM expected utility theory	
	a) Intuition	[L4]
	b) Axiomatic foundations	[DD3]
4.	Risk aversion coefficients and portfolio choice	[DD5,L4]
5.	Uncertainty/ambiguity aversion	
6.	Prudence coefficient and precautionary savings	[DD5]
7.	Mean-variance preferences	[L4.6]

State-by-state Dominance

- State-by-state dominance is an incomplete ranking

	t = 0	t = 1		
	Cost	Payoff $\pi_1=\pi_2=1/2$		
		<i>s</i> = 1 <i>s</i> = 2		
Investment 1	-1000	1050	1200	
Investment 2	-1000	500	1600	
Investment 3	-1000	1050 1600		

- Investment 3 state-by-state dominates investment 1
- Recall: $y, x \in \mathbb{R}^S$
 - $y \ge x \Leftrightarrow y_s \ge x_s$ for each s = 1, ..., S
 - $y > x \Leftrightarrow y \ge x, y \ne x$
 - $y \gg x \Leftrightarrow y_s > x_s$ for each s = 1, ..., S

State-by-state Dominance (ctd.)

	t = 0	t = 1			
	Cost	Return $\pi_1=\pi_2=1/2$		E[Return]	σ
		<i>s</i> = 1	<i>s</i> = 2		
Investment 1	-1000	+ 5%	+ 20%	12.5%	7.5%
Investment 2	-1000	- 50% + 60%		5%	55%
Investment 3	-1000	+ 5%	+ 60%	32.5%	27.5%

- Investment 1 mean-variance dominates 2
- But, investment 3 does *not* mean-variance dominate 1

State-by-state Dominance (ctd.)

	t = 0	<i>t</i> = 1			
	Cost	Return $\pi_1=\pi_2=1/2$		E[Return]	σ
		<i>s</i> = 1	<i>s</i> = 2		
Investment 4	-1000	+ 3%	+ 5%	4.0%	1.0%
Investment 5	-1000	+ 3%	+ 8%	5.5%	2.5%

- What is the trade-off between risk and expected return?
- Investment 4 has a higher Sharpe ratio $\frac{E[r]-r_f}{\sigma}$ than investment 5 for $r_f = 0$

Overview: Risk Preferences

1.	St	ate-by-state dominance	
2.	St	ochastic dominance	[DD4]
3.	٧ľ	IM expected utility theory	
	a)	Intuition	[L4]
	b)	Axiomatic foundations	[DD3]
4.	Ri	sk aversion coefficients and portfolio choice	[DD5,L4]
5.	Pr	udence coefficient and precautionary savings	[DD5]
6.	Μ	ean-variance preferences	[L4.6]

Stochastic Dominance

- No state-space probabilities are not assigned specific states
 - Only applicable for final payoff gamble
 - Not for stocks/lotteries that form a portfolio (whose payoff is final)
 - Random variables before introduction of (Ω, \mathcal{F}, P)
- Still incomplete ordering
 - "More complete" than state-by-state ordering
 - State-by-state dominance ⇒ stochastic dominance
 - Risk preference not needed for ranking!
 - independently of the specific trade-offs (between return, risk and other characteristics of probability distributions) represented by an agent's utility function. ("risk-preference-free")
- Next Section:
 - Complete preference ordering and utility representations

From payoffs per state to probability

state	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	\$ ₅
probability	π_1	π_2	π_3	π_4	π_5
Payoff x	10	10	20	20	20
Payoff y	10	20	20	20	30

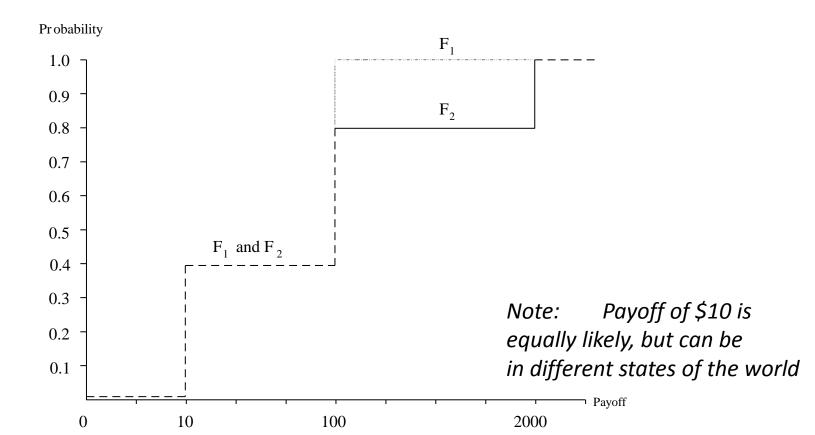
Expressed in "probability lotteries" – only useful for final payoffs

(since some cross correlation information ins lost)

payoff	10	20	30
Prob x	$p_{10} = \pi_1 + \pi_2$	$p_{20} = \pi_3 + \pi_4 + \pi_5$	$p_{30} = 0$
Prob y	$q_{10} = \pi_1$	$q_{20} = \pi_2 + \pi_3 + \pi_4$	$q_{30} = \pi_5$

Preference $x \succ y \in \mathbb{R}^S$ expressed in probabilities $p_x \succ q_y$

				Expected Payoff	Standard Deviation
Payoffs	10	100	2000		
Probability 1	.4	.6	0	64	44
Probability 2	.4	.4	.2	444	779

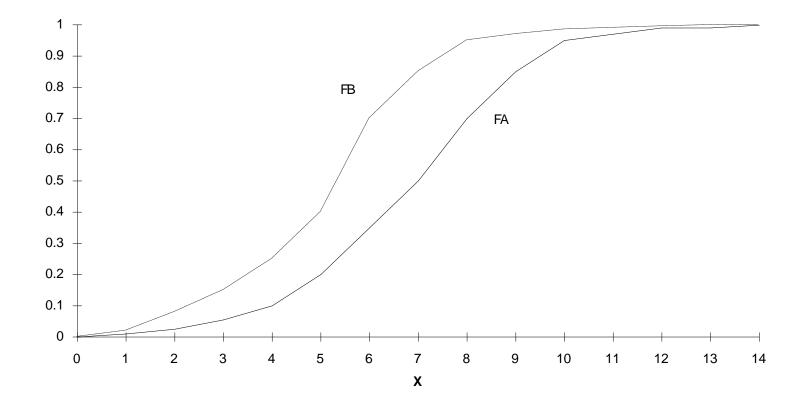


First Order Stochastic Dominance

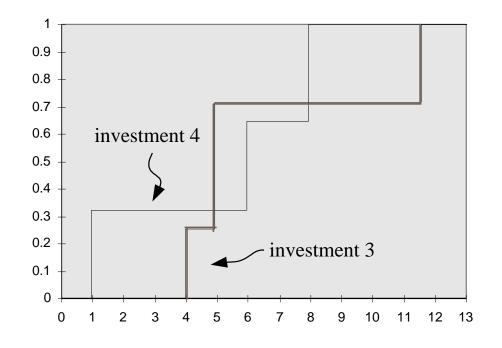
• <u>Definition</u>: Let $F_A(x)$, $F_B(x)$, respectively, represent the cumulative distribution functions of two random variables (cash payoffs) that, without loss of generality assume values in the interval [a, b]. We say that $F_A(x)$ first order stochastically dominates (FSD) $F_B(x)$ if and only if for all $x \in [a, b]$ $F_A(x) \leq F_B(x)$

Homework: Provide an example which can be ranked according to FSD, but not according to state dominance.

First Order Stochastic Dominance



Payoff	1	4	5	6	8	12
Probability 3	0	.25	0.50	0	0	.25
Probability 4	.33	0	0	.33	.33	0



CDFs of investment 3 and 4

Second Order Stochastic Dominance

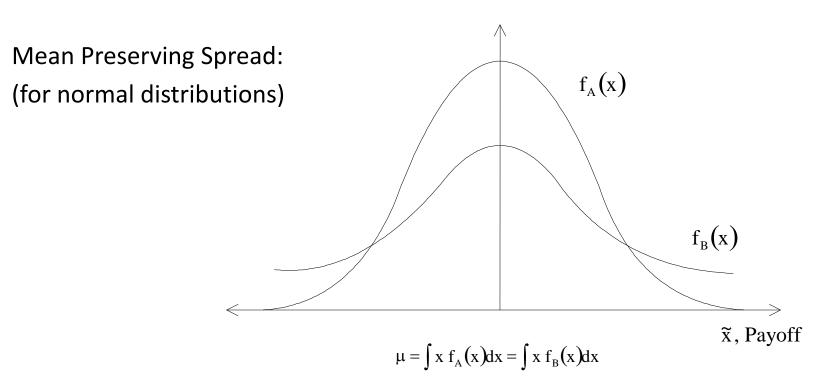
• <u>Definition</u>: Let $F_A(x)$, $F_B(x)$ be two cumulative probability distribution for random payoffs in [a, b]. We say that $F_A(x)$ second order stochastically dominates (SSD) $F_B(x)$ if and only if for any $x \in [a, b]$ $\int_{-\infty}^{x} [F_B(t) - F_A(t)] dt \ge 0$

(with strict inequality for some meaningful interval of values of *t*).

Mean Preserving Spread

 $x_B = x_A + z$

(where z is independent and has zero mean)



Mean Preserving Spread & SSD

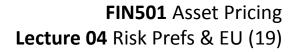
- <u>Theorem:</u> Let $F_A(x)$ and $F_B(x)$ be two distribution functions defined on the same state space with identical means.
 - Then the following statements are equivalent :
 - $F_A(x)$ SSD $F_B(x)$
 - $F_B(x)$ is a mean-preserving spread of $F_A(x)$

Overview: Risk Preferences

1.	St	ate-by-state dominance			
2.	Stochastic dominance				
3.	٧N	IM expected utility theory			
	a)	Intuition	[L4]		
	b)	Axiomatic foundations	[DD3]		
4.	Ri	sk aversion coefficients and portfolio choice	[DD5,L4]		
5.	Pr	udence coefficient and precautionary savings	[DD5]		
6.	Μ	ean-variance preferences	[L4.6]		

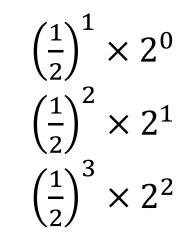
A Hypothetical Gamble

- Suppose someone offers you this gamble:
 - "I have a fair coin here. I'll flip it, and if it's tails I pay you \$1 and the gamble is over. If it's heads, I'll flip again. If it's tails then, I pay you \$2, if not I'll flip again. With every round, I double the amount I will pay to you if it turns up tails."
- Sounds like a good deal. After all, you can't lose. So here's the question:
 - How much are you willing to pay to take this gamble?



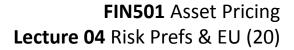
Proposal 1: Expected Value

- With probability $\frac{1}{2}$ you get \$1,
- With probability $\frac{1}{4}$ you get \$2,
- With probability $\frac{1}{8}$ you get \$4,



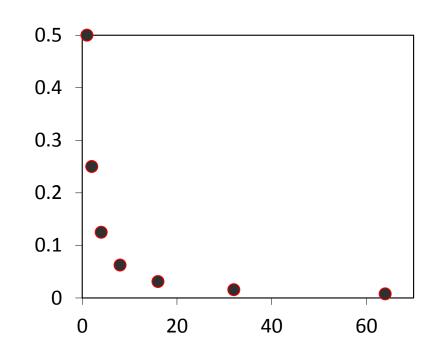
 The expected payoff is given by the sum of all these terms, i.e.

$$\sum_{t=1}^{\infty} \left(\frac{1}{2}\right)^{t} \times 2^{t-1} = \sum_{t=1}^{\infty} \frac{1}{2} = \infty$$



St. Petersburg Paradox

- You should pay everything you own *and more* to purchase the right to take this gamble!
- Yet, in practice, no one is prepared to pay such a high price. Why?
- Even though the expected payoff is infinite, the distribution of payoffs is not attractive...
 - with 93% probability we get \$8 or less;
 - with 99% probability we get \$64 or less



Proposal 2

 Bernoulli suggests that large gains should be weighted less. He suggests to use the natural logarithm.

[Cremer - another great mathematician of the time - suggests the square root.]

$$\sum_{t=1}^{\infty} \left(\frac{1}{2}\right)^t \times \ln 2^{t-1} = \ln 2 < \infty$$

According to this Bernoulli would pay at most $e^{\ln 2} = 2$ to participate in this gamble

Representation of Preferences

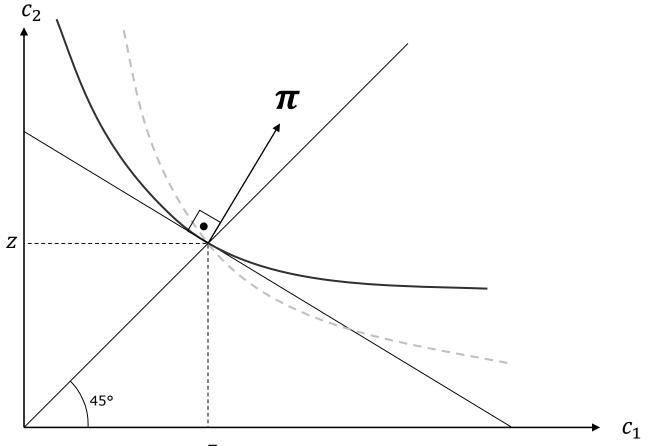
A preference ordering is (i) complete, (ii) transitive, (iii) continuous and [(iv) relatively stable] can be represented by a utility function, i.e.

$$\begin{aligned} (c_0, c_1, \dots, c_S) &\succ (c'_0, c'_1, \dots, c'_S) \\ \Leftrightarrow U(c_0, c_1, \dots, c_S) &\geq U(c'_0, c'_1, \dots, c'_S) \end{aligned}$$

(preference ordering *over lotteries* – (S + 1)-dimensional space)

FIN501 Asset Pricing Lecture 04 Risk Prefs & EU (23)

Indifference curves



Preferences over Prob. Distributions

- Consider c_0 fixed, c_1 is a random variable
- Preference ordering over probability distributions
- Let
 - P be a set of probability distributions with a finite support over a set X,
 - ▶ preference ordering over P (that is, a subset of P × P)

Prob. Distributions

- *S* states of the world
- Set of all possible lotteries

$$P = \{ p \in \mathbb{R}^S | p(c) \ge 0, \sum p(c) = 1 \}$$

- Space with *S* dimensions
- Can we simplify the utility representation of preferences over lotteries?
- Space with *one* dimension income
- We need to assume further axioms

Expected Utility Theory

 A binary relation that satisfies the following three axioms if and only if there exists a function u(·) such that

$$p \succ q \Leftrightarrow \sum p(c)u(c) > \sum q(c)u(c)$$

i.e. preferences correspond to expected utility.

vNM Expected Utility Theory

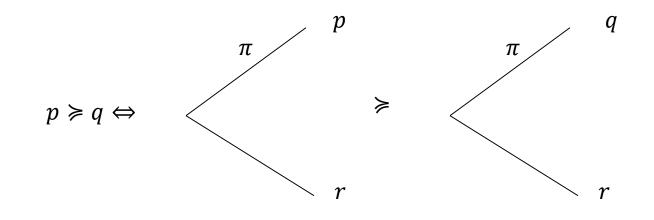
- Axiom 1 (Completeness and Transitivity):
 - Agents have preference relation over P (repeated)
- Axiom 2 (Substitution/Independence)
 - For all lotteries $p, q, r \in P$ and $\alpha \in (0,1]$, $p \ge q \Leftrightarrow \alpha p + (1 - \alpha)r \ge \alpha q + (1 - \alpha)r$
- Axiom 3 (Archimedian/Continuity)
 - For all lotteries $p, q, r \in P$ if p > q > r then there exists $\alpha, \beta \in (0,1)$ such that,

 $\alpha p + (1-\alpha)r \succ q \succ \beta p + (1-\beta)r$

Problem: p you get \$100 for sure, q you get \$10 for sure, r you are killed

Independence Axiom

• Independence of irrelevant alternatives:

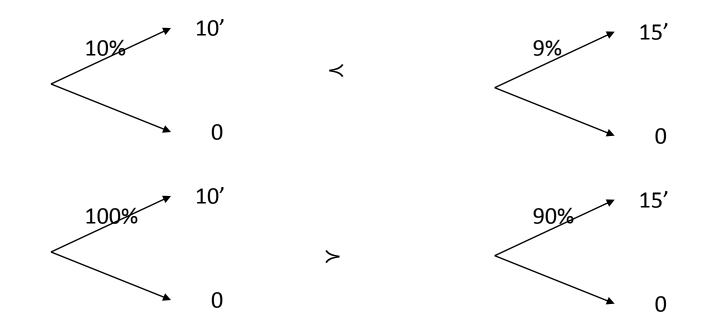


FIN501 Asset Pricing Lecture 04 Risk Prefs & EU (29)

Allais Paradox – Violation of Independence Axiom

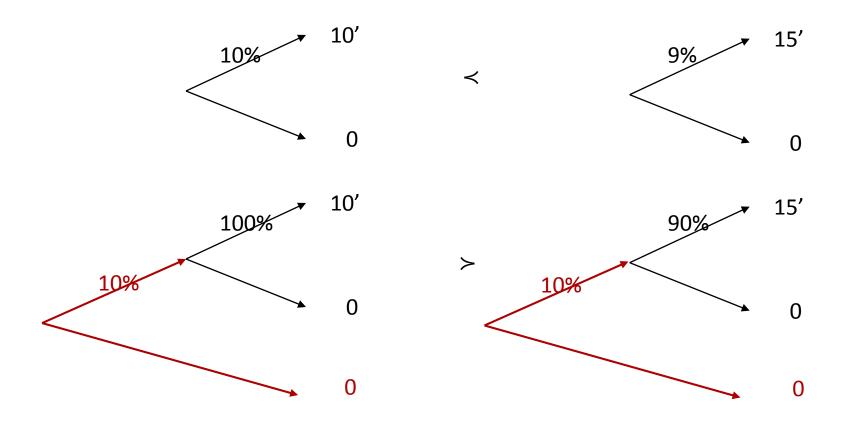
FIN501 Asset Pricing Lecture 04 Risk Prefs & EU (30)

Allais Paradox – Violation of Independence Axiom



FIN501 Asset Pricing Lecture 04 Risk Prefs & EU (31)

Allais Paradox – Violation of Independence Axiom



vNM EU Theorem

 A binary relation that satisfies the axioms 1-3 if and only if there exists a function u(·) such that

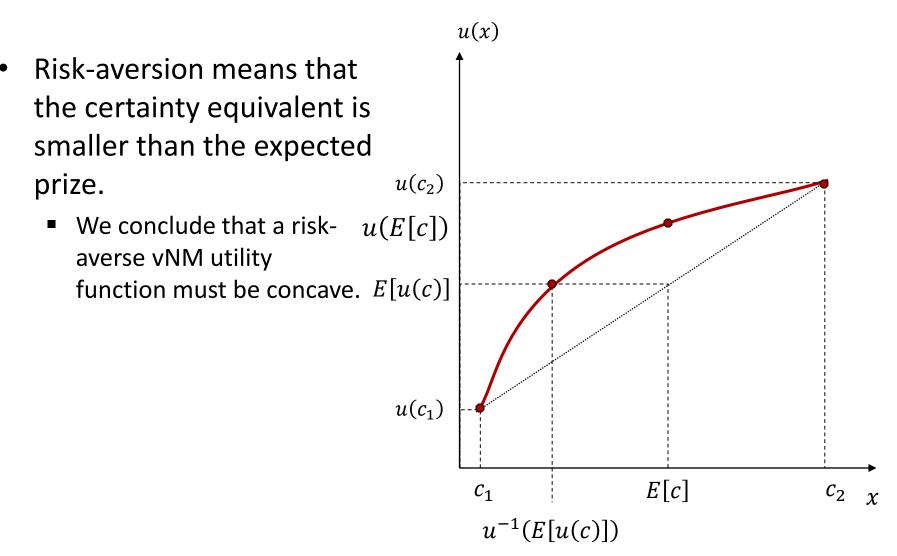
$$p > q \Leftrightarrow \sum p(c)u(c) > \sum q(c)u(c)$$

i.e. preferences correspond to expected utility.

Risk-Aversion and Concavity

u(c)The shape of the von Neumann Morgenstern (NM) utility function reflects risk preference $u(c_2)$ Consider lottery with final wealth of c_1 or c_2 E[u(c)] $u(c_1)$ E[c] C_1 C_2

Risk-aversion and concavity



Jensen's Inequality

Theorem:

- Let $g(\cdot)$ be a concave function on the interval [a, b], and x be a random variable such that $P[x \in [a, b]] = 1$
- Suppose the expectations E[x] and E[g(x)] exist; then

 $E[g(x)] \le g[E[x]]$

Furthermore, if $g(\cdot)$ is strictly concave, then the inequality is strict.

Expected Utility & Stochastic Dominance

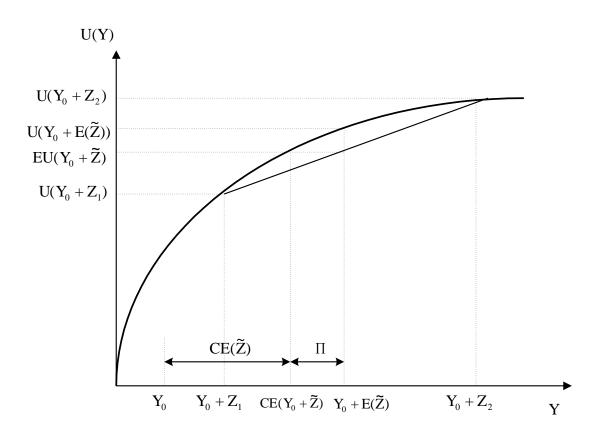
- <u>Theorem</u>: Let $F_A(\tilde{x})$, $F_B(\tilde{x})$ be two cumulative probability distribution for random payoffs $\tilde{x} \in [a, b]$. Then $F_A(\tilde{x})$ FSD $F_B(\tilde{x})$ if and only if $E_A[u(\tilde{x})] \ge E_B[u(\tilde{x})]$ for all non decreasing utility functions $U(\cdot)$.
- <u>Theorem:</u> Let $F_A(\tilde{x})$, $F_B(\tilde{x})$ be two cumulative probability distribution for random payoffs $\tilde{x} \in [a, b]$. Then $F_A(\tilde{x})$ SSD $F_B(\tilde{x})$ if and only if $E_A[u(\tilde{x})] \ge E_B[u(\tilde{x})]$ for all non decreasing concave utility functions $U(\cdot)$.

Certainty Equivalent and Risk Premium

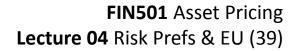
$$E[u(c+\tilde{Z})] = u(c+CE(c,\tilde{Z}))$$

$$E[u(c+\tilde{Z})] = u(c+E[\tilde{Z}] - \Pi(c,\tilde{Z}))$$

Certainty Equivalent and Risk Premium



Certainty Equivalent and Risk Premium



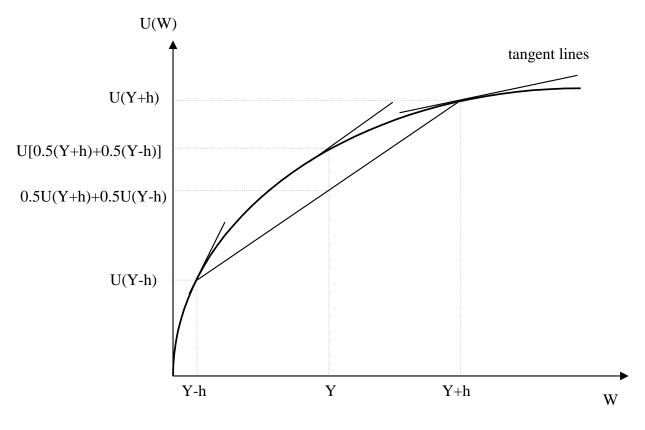
Utility Transformations

- General utility function:
 - Suppose U(c₀, c₁, ..., c_S) > U(c'₀, c'₁, ..., c'_S) represents complete, transitive,... preference ordering,
 - then $V(\cdot) = f(U(\cdot))$, where $f(\cdot)$ is strictly increasing represents the same preference ordering
- vNM utility function
 - Suppose E[u(c)] represents preference ordering satisfying vNM axioms,
 - then v(c) = a + bu(c) represents the same.
 "affine transformation"

Overview: Risk Preferences

1.	State-by-state dominance	
2.	Stochastic dominance	[DD4]
3.	vNM expected utility theory	
	a) Intuition	[L4]
	b) Axiomatic foundations	[DD3]
4.	Risk aversion coefficients and portfolio choice	[DD5,L4]
5.	Uncertainty/ambiguity aversion	
6.	Prudence coefficient and precautionary savings	[DD5]
7.	Mean-variance preferences	[L4.6]

Measuring Risk aversion



A Strictly Concave Utility Function

Arrow-Pratt Measures of Risk aversion

absolute risk aversion

$$= -\frac{u''(c)}{u'(c)} \equiv R_A(c)$$

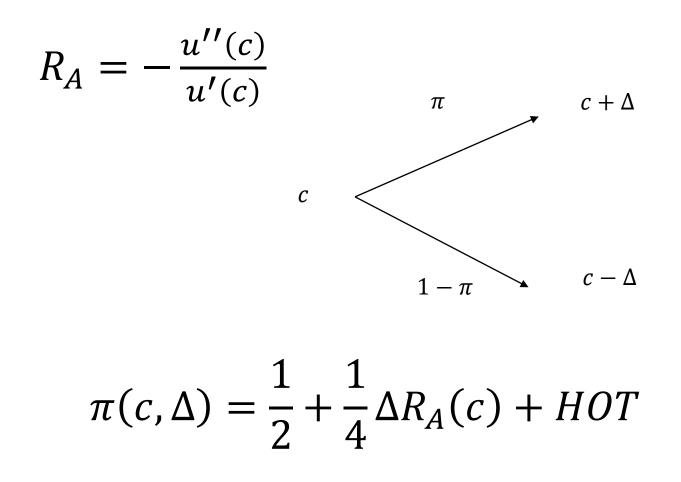
relative risk aversion

$$= -\frac{cu''(c)}{u'(c)} \equiv R_R(c)$$

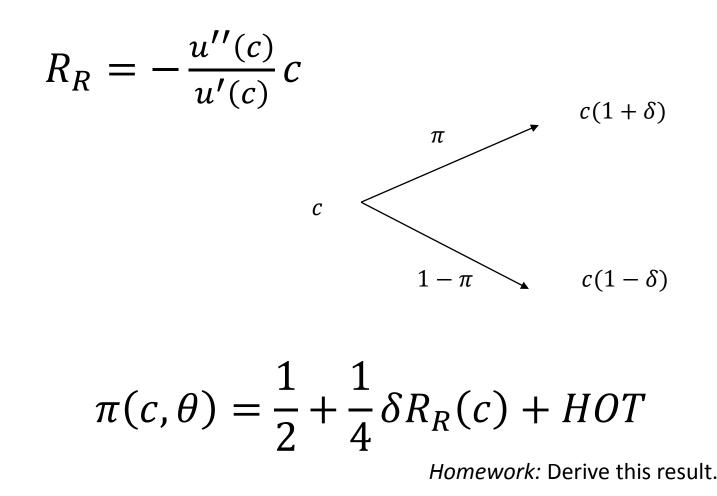
risk tolerance

 $=\frac{1}{R_A}$

Absolute risk aversion coefficient



Relative risk aversion coefficient



CARA and CRRA-utility functions

• Constant Absolute RA utility function $u(c) = -e^{-\rho c}$

Constant Relative RA utility function

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}, \gamma \neq 1$$
$$u(c) = \ln[c], \gamma = 1$$

Level of Relative Risk Aversion

$$\frac{(Y+CE)^{1-\gamma}}{1-\gamma} = \frac{\frac{1}{2}(Y+50000)^{1-\gamma}}{1-\gamma} + \frac{\frac{1}{2}(Y+100000)^{1-\gamma}}{1-\gamma}$$

Y = 0

= 0	CE = 75,000 (risk neutrality)
_	

CE = 70,711
•

γ = 2	CE = 66,246
γ = 5	CE = 58,566
$\gamma = 10$	CE = 53,991
γ = 20	CE = 51,858
2.2	

 $\gamma = 30$ CE = 51,209

<u>Y = 100000</u> $\gamma = 5$ CE = 66,530

γ

Risk aversion and Portfolio Allocation

- No savings decision (consumption occurs only at t=1)
- Asset structure
 - One risk free bond with net return r_f
 - One risky asset with random net return r (a =quantity of risky assets)

$$\max_{a} E\left[u\left(Y_0(1+r_f)+a(r-r_f)\right)\right]$$

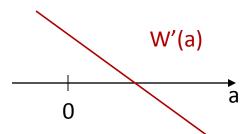
 $FOC \Rightarrow E\left[u'\left(Y_0(1+r_f)+a(r-r_f)\right)(r-r_f)\right] = 0$

Risk aversion and Portfolio Allocation

• <u>Theorem 4.1</u>: Assume U' > 0, U'' < 0 and let \hat{a} denote the solution to above problem. Then

 $\hat{a} > 0 \Leftrightarrow E[\hat{r}] > r_f$ $\hat{a} = 0 \Leftrightarrow E[\tilde{r}] = r_f$ $\hat{a} < 0 \Leftrightarrow E[\tilde{r}] < r_f$

- Define $W(a) = E\left[u\left(Y_0(1+r_f) + a(\tilde{r}-r_f)\right)\right]$. The FOC can then be written $W'(a) = E\left[u'\left(Y_0(1+r_f) + a(\tilde{r}-r_f)\right)(\tilde{r}-r_f)\right] = 0$.
- By risk aversion $W''(a) = E\left[u''\left(Y_0(1+r_f) + a(\tilde{r}-r_f)\right)(\tilde{r}-r_f)^2\right] < 0$, that is, W'(a) is everywhere decreasing
 - It follows that \hat{a} will be positive $\Leftrightarrow W'(0) > 0$
- Since u' > 0 this implies that $\hat{a} > 0 \Leftrightarrow E[\tilde{r} r_f] > 0$
 - The other assertion follows similarly



Portfolio as wealth changes

• Theorem (Arrow, 1971):

Let $\hat{a} = \hat{a}(Y_0)$ be the solution to max-problem above; then:

i.
$$\frac{\partial R_A}{\partial Y} < 0$$
 (DARA) $\Rightarrow \frac{\partial \hat{a}}{\partial Y_0} > 0$
ii. $\frac{\partial R_A}{\partial Y} = 0$ (CARA) $\Rightarrow \frac{\partial \hat{a}}{\partial Y_0} = 0$
iii. $\frac{\partial R_A}{\partial Y} > 0$ (IARA) $\Rightarrow \frac{\partial \hat{a}}{\partial Y_0} < 0$

Portfolio as wealth changes

• <u>Theorem (Arrow 1971)</u>: If, for all wealth levels Y,

i.
$$\frac{\partial R_R}{\partial Y} = 0 \text{ (CRRA)} \implies \eta = 1$$

ii. $\frac{\partial R_R}{\partial Y} < 0 \text{ (DRRA)} \implies \eta > 1$
iii. $\frac{\partial R_R}{\partial Y} > 0 \text{ (IRRA)} \implies \eta < 1$
where $\eta = \frac{da/a}{dY/Y}$

Log utility & Portfolio Allocation

 $u(Y) = \ln Y$

$$E\left[\frac{(\tilde{r} - r_f)}{Y_0(1 + r_f) + a(\tilde{r} - r_f)}\right] = 0$$
$$\frac{a}{Y_0} = \frac{\left((1 + r_f)[E[\tilde{r}] - r_f]\right)}{-(r_1 - r_f)(r_2 - r_f)} > 0$$

2 states, where $r_2 > r_f > r_1$

Constant fraction of wealth is invested in risky asset! *Homework:* show that this result holds for

- any CRRA utility function
- any distribution of r

Risk aversion and Portfolio Allocation

<u>Theorem (Cass and Stiglitz,1970):</u> Let the vector $\begin{vmatrix} \hat{a}_1(Y_0) \\ \vdots \\ \hat{a}_I(Y_0) \end{vmatrix}$ denote the ٠

amount optimally invested in the J risky assets if the wealth level is Y_0 .

Then
$$\begin{bmatrix} \hat{a}_1(Y_0) \\ \vdots \\ \hat{a}_J(Y_0) \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_J \end{bmatrix} f(Y_0) \text{ if and only if either}$$

i. $u'(Y_0) = (BY_0 + C)^{\Delta}$ or
ii. $u'(Y_0) = \xi e^{-\rho Y_0}$

In words, it is sufficient to offer a **mutual fund**. ٠

LRT/HARA-utility functions

- Linear Risk Tolerance/hyperbolic absolute risk aversion $-\frac{u''(c)}{u'(c)} = \frac{1}{A + Bc}$
- Special Cases
 - B = 0, A > 0 CARA

$$u(c) = \frac{1}{B-1}(A+Bc)^{\frac{B-1}{B}}$$

- $B \neq 0, \neq 1$ Generalized Power
 - B = 1 Log utility
 - B = -1 Quadratic Utility
 - $B \neq 1, A = 0$ CRRA Utility function i

$$u(c) = \ln[A + Bc]$$
$$u(c) = -(A - c)^2$$

$$u(c) = \frac{1}{B-1} (Bc)^{\frac{B-1}{B}}$$

Overview: Risk Preferences

1.	State-by-state dominance	
2.	Stochastic dominance	[DD4]
3.	vNM expected utility theory	
	a) Intuition	[L4]
	b) Axiomatic foundations	[DD3]
4.	Risk aversion coefficients and portfolio choice	[DD5,L4]
5.	Uncertainty/ambiguity aversion	
6.	Prudence coefficient and precautionary savings	[DD5]
7.	Mean-variance preferences	[L4.6]

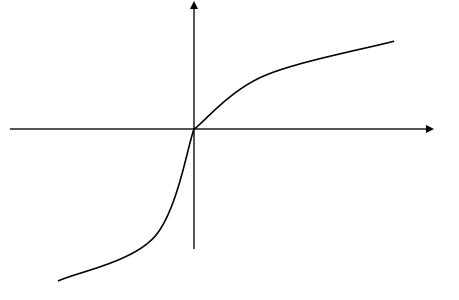
Digression: Subjective EU Theory

- Derive perceived probability from preferences!
 - Set S of prizes/consequences
 - Set Z of states
 - Set of functions $f(s) \in Z$, called acts (consumption plans)
- Seven SAVAGE Axioms
 - Goes beyond scope of this course.

Digression: Ellsberg Paradox

- 10 balls in an urn
 Lottery 1: win \$100 if you draw a red ball
 Lottery 2: win \$100 if you draw a blue ball
- Uncertainty: Probability distribution is not known
- Risk: Probability distribution is known (5 balls are red, 5 balls are blue)
- Individuals are *"uncertainty/ambiguity averse"* (non-additive probability approach)

Digression: Prospect Theory Value function (over gains and losses)



- Overweight low probability events
- Experimental evidence

Overview: Risk Preferences

1.	State-by-state dominance	
2.	Stochastic dominance	[DD4]
3.	vNM expected utility theory	
	a) Intuition	[L4]
	b) Axiomatic foundations	[DD3]
4.	Risk aversion coefficients and portfolio choice	[DD5,L4]
5.	Uncertainty/ambiguity aversion	
6.	Prudence coefficient and precautionary savings	[DD5]
7.	Mean-variance preferences	[L4.6]

Introducing Savings

- Introduce savings decision: Consumption at t = 0 and t = 1
- Asset structure 1:
 - risk free bond R^f
 - NO risky asset with random return
- Increase R^f :
 - Substitution effect: shift consumption from t = 0 to t = 1 \Rightarrow save more
 - Income effect: agent is "effectively richer" and wants to consume some of the additional richness at t = 0
 ⇒ save less
 - For log-utility ($\gamma = 1$) both effects cancel each other

Savings: Euler Equation

for CRRA:
$$u(c) = \frac{c^{-\gamma}}{1-\gamma}$$

- $\max_{c_0,c_1} u(c_0) + \delta u(c_1)$ • s.t. $c_1 = R^f(e_0 - c_0) + e_1$
- $\max_{c_0} u(c_0) + \delta u(R^f e_0 + e_1)$

• FOC:
$$1 = \delta \frac{u'(c_1)}{u'(c_0)} R^f$$

• $\mathbb{r}^f \approx \ln R^f = -\ln\left(\frac{u'(c_1)}{u'(c_0)}\right) - \ln\delta$

$$1 = \delta \left(\frac{c_1}{c_0}\right)^{-\gamma} R^f$$

for log:
$$u(c) = \ln c \& e_1 = 0$$

 $c_0 = \frac{1}{\delta(\delta+1)} [e_0 + \frac{1}{R} e_1]$
 $c_1 = \left(1 - \frac{1}{\delta(\delta+1)}\right) [Re_0 + e_1]$

for $e_1 = 0$ saving does not depend on (risk of) R^f : $1 = \delta\left(\frac{c_0}{R^f(e_0 - c_0)}\right) R^f$

Intertemporal Elasticity of Substitution

•
$$IES \coloneqq \frac{\partial \ln\left(\frac{c_1}{c_0}\right)}{\partial r} = -\frac{\partial \ln\left(\frac{c_1}{c_0}\right)}{\partial \ln\left(\frac{u'(c_1)}{u'(c_0)}\right)}$$

• For CRRA
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
 $IES = \frac{1}{\gamma}$

Investment Risk

- Savings decision: Consumption at t = 0 and t = 1
- No endowment risk at t = 1
- Asset structure 2: (no portfolio choice yet)
 - Single risky asset only
 - No risk-free asset
- <u>Theorem (Rothschild and Stiglitz, 1971)</u>: For $R^B = R^A + \varepsilon$, where $E[\varepsilon] = 0$ and $\varepsilon \perp R^A$, then respective savings s^A , s^B out of initial wealth level W_0 are

• If
$$\frac{\partial R_R}{\partial W_0} \leq 0$$
 and $R_R > 1$, then $s^A < s^B$.

• If $\frac{\partial R_R}{\partial W_0} \ge 0$ and $R_R < 1$, then $s^A > s^B$.

Investment Risk with Portfolio and Savings Decision

- Savings decision: Consumption at t = 0 and t = 1
- No endowment risk at t = 1, $e_1 = 0$
- Asset structure 3: portfolio shares α^j

• $\max_{c_0, c_1, \alpha_0} u(c_0) + \delta E_0[u(c_1)]$ s.t. $W_1 = \sum \alpha_0^j R_1^j (W_0 - c_0)$

$$u'(c_0) = E_0[\delta u'(c_1)R^j] \forall j$$

٠

.

Investment Risk: Excess Return

$$1 = E_0 \left[\delta \frac{u(c_1)}{u(c_0)} R^j \right] \forall j$$

For CRRA
In "log-notation": $\mathbb{C}_t \equiv \log c_t$, $\mathbb{r}_t^j \equiv \log R_t^j$
 $1 = \delta E_0 \left[e^{-\gamma(\mathbb{C}_1 - \mathbb{C}_0) + \mathbb{r}^j} \right]$

Assume
$$\mathbb{C}_t$$
, $\mathbb{r}_t^j \sim \mathcal{N}$

$$1 = \delta[e^{-\gamma E_0[\Delta c_1] + E_0[r^j] + \frac{1}{2}Var_0[-\gamma \Delta c_1 + r^j]}]$$

$$0 = \ln \delta - \gamma E_0[\Delta c_1] + E_0[r^j] + \frac{\gamma^2}{2}Var_0[\Delta c_1] + \frac{1}{2}Var_0[r^j] - \gamma Cov_0[\Delta c_1, r^j]$$

• For risk free asset:

$$\mathbb{r}^{f} = -\ln\delta + \gamma E_{0}[\Delta \mathbb{c}_{1}] - \frac{\gamma^{2}}{2} Var_{0}[\Delta \mathbb{c}_{1}]$$

• Excess return of any asset:

$$E_0[\mathbb{r}^j] + \frac{1}{2} Var_0[\mathbb{r}^j] - \mathbb{r}^f = \gamma Cov_0[\Delta \mathbb{c}_1, \mathbb{r}^j]$$

Investment Risk: Portfolio Shares

Excess return

$$E_0[\mathbf{r}^j] + \frac{1}{2} Var_0[\mathbf{r}^j] - \mathbf{r}^f = \gamma Cov_0[\Delta \mathbf{c}_1, \mathbf{r}^j]$$

- If consumption growth $\Delta c_1 = \Delta w_1$ wealth growth
- $Cov_0[\Delta W_1, \mathbb{r}^j] = Cov_0[\alpha_0^j \mathbb{r}^j, \mathbb{r}^j] = \alpha_0^j Var_0[\mathbb{r}^j]$
- Hence, optimal portfolio share

$$\alpha_0^j = \frac{E_0[\mathbf{r}^j] + \frac{1}{2} Var_0[\mathbf{r}^j] - \mathbf{r}^f}{\gamma Var_0[\mathbf{r}^j]}$$

nonlinear

Making Δw_1 Linear in $\mathbb{C}_0 - w_0$

- $W_1 = \sum \alpha_0^j R_1^j (W_0 c_0)$ recall $e_1 = 0$
- $\frac{W_1}{W_0} = \sum \alpha_0^j R_1^j (1 \frac{c_0}{W_0})$ let $R_1^p = \sum \alpha_0^j R_1^j$
- In "log-notation": $\Delta W_1 = \mathbb{r}_1^J + \log(1 e^{\mathbb{c}_0 W_0})$
- Linearize using Taylor expansion around $\overline{\mathbb{C} \mathbb{W}}$

•
$$\Delta w_1 = \mathbb{r}_1^j + k + \left(1 - \frac{1}{\rho}\right)(\mathbb{c}_0 - w_0)$$

• Where
$$k \equiv \log \rho + (1 - \rho) \log \frac{1 - \rho}{\rho}$$
, $\rho = 1 - e^{\overline{\mathbb{C} - \mathbb{W}}}$

Hint: in continuous time this approximation is precise

Endowment Risk:

Prudence and Pre-cautionary Savings

- Savings decision Consumption at t = 0 and t = 1
- Asset structure 2:
 - No investment risk: riskfree bond
 - Endowment at t = 1 is random (background risk)
- 2 effects: Tomorrow consumption is more volatile
 - consume more today, since it's not risky
 - save more for precautionary reasons

Prudence and Pre-cautionary Savings

- Risk aversion is about the willingness to insure ...
- ... but not about its comparative statics.
- How does the behavior of an agent change when we marginally increase his exposure to risk?
- An old hypothesis (J.M. Keynes) is that
 - people save more when they face greater uncertainty
 - precautionary saving
- Two forms:
 - Shape of utility function $u^{\prime\prime\prime}$
 - Borrowing constraint $a_t \ge -b$

Precautionary Savings 1: Prudence

- Utility maximization $u(c_0) + \delta u E_0[u(c_1)]$
 - Budget constraint: $c_1 = e_1 + (1 + r)(e_0 c_0)$
 - Standard Euler equation: $u'(c_t) = \delta(1+r)E_t[u'(c_{t+1})]$
- If u''' > 0, then Jensen's inequality implies:
 - $\frac{1}{\delta(1+r)} = \frac{E_t[u'(c_{t+1})]}{u'(c_t)} > \frac{u'(E_t[c_{t+1}])}{u'(c_t)}$
 - Increase variance of e_1 (mean preserving spread)
 - Numerator $E_t[u'(c_{t+1})]$ increases with variance of c_{t+1}
 - For equality to hold, denominator has to increase c_t has to decrease,
 i.e. savings has to increase precautionary savings
- <u>Prudence</u> refers to curvature of u', i.e. $P = -\frac{u'''}{u''}$

Precautionary Savings 1: Prudence

- Does not directly follow from risk aversion, involves u'''
 Leland (1968)
- Kimball (1990) defines **absolute prudence** as

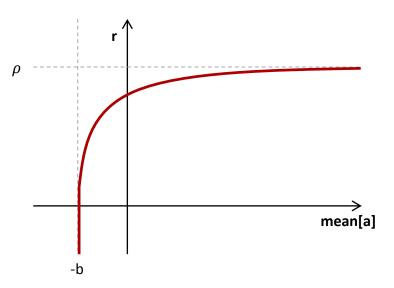
$$P(c) \coloneqq -\frac{u^{\prime\prime\prime}(c)}{u^{\prime\prime}(c)}$$

- Precautionary saving if any only if prudent.
 - important for comparative statics of interest rates.
- DARA \Rightarrow Prudence

$$\frac{\partial \left(-\frac{u^{\prime\prime}}{u^{\prime}}\right)}{\partial c} < 0, \qquad -\frac{u^{\prime\prime\prime}}{u^{\prime\prime}} > -\frac{u^{\prime\prime}}{u^{\prime\prime}}$$

Precautionary Savings 2: Future Borrowing Constraint

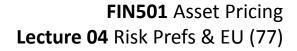
- Agent might be concerned that he faces *borrowing constraints* in some state in the future
- agents engage in precautionary savings (self-insurance)
- In Bewley (1977) idiosyncratic income shocks, mean asset holdings mean[a] (across individuals) result from individual optimization



Precautionary Savings 1: Prudence

- Asset structure 3:
 - No risk free bond
 - One risky asset with random gross return R

- <u>Theorem (Rothschild and Stiglitz,1971)</u> : Let \tilde{R}_A , \tilde{R}_B be two return distributions with identical means such that $\tilde{R}_B = \tilde{R}_A + e$, where e is white noise, and let s_A , s_B be the savings out of Y_0 corresponding to the return distributions \tilde{R}_A , \tilde{R}_B respectively.
 - If $R'_R(Y) \leq 0$ and $R_R(Y) > 1$, then $s_A < s_B$
 - If $R'_R(Y) \ge 0$ and $R_R(Y) < 1$, then $s_A > s_B$



Precautionary Savings 1: Prudence

$$P(c) = -\frac{u'''(c)}{u''(c)}$$
$$P(c)c = -\frac{cu'''(c)}{u''(c)}$$

• <u>Theorem</u>: Let \tilde{R}_A , \tilde{R}_B be two return distributions such that \tilde{R}_A SSD \tilde{R}_B ,

let s_A and s_B be, respectively, the savings out of Y_0 . Then,

- $s_A \ge s_B \Leftrightarrow cP(c) \le 2$ and conversely,
- $s_A < s_B \Leftrightarrow cP(c) > 2$

Overview: Risk Preferences

1.	State-by-state dominance	
2.	Stochastic dominance	[DD4]
3.	vNM expected utility theory	
	a) Intuition	[L4]
	b) Axiomatic foundations	[DD3]
4.	Risk aversion coefficients and portfolio choice	[DD5,L4]
5.	Uncertainty/ambiguity aversion	
6.	Prudence coefficient and precautionary savings	[DD5]
7.	Mean-variance preferences	[L4.6]

Mean-variance Preferences

- Early research (e.g. Markowitz and Sharpe) simply used mean and variance of return
- Mean-variance utility often easier than vNM utility function
- ... but is it compatible with vNM theory?
- The answer is yes ... approximately ... under some conditions.

Mean-Variance: quadratic utility

Suppose utility is quadratic, $u(c) = ac - bc^2$ Expected utility is then

$$E[u(c)] = aE[c] - bE[c^2]$$

= aE[c] - b(E[c]² + var[c])

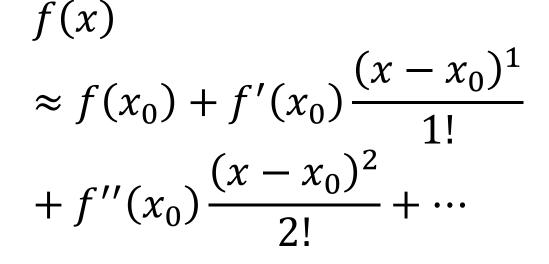
Thus, expected utility is a function of the mean E[c], and the variance var[c] only.

Mean-Variance: joint normals

- Suppose all lotteries in the domain have normally distributed prized. (independence is not needed).
 - This requires an infinite state space.
- Any linear combination of jointly normals is also normal.
- The normal distribution is completely described by its first two moments.
- Hence, expected utility can be expressed as a function of just these two numbers as well.

Mean-Variance: small risks

• Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function. The Taylor approximation is



• Use the Taylor approximation for E[u(x)]

Mean-Variance: small risks

- Since $E[u(w + x)] = u(c^{CE})$, this simplifies to $w - c_{CE} \approx R_A(w) \frac{\operatorname{var}(x)}{2}$
 - $w c_{CE}$ is the risk premium
 - We see here that the risk premium is approximately a linear function of the variance of the additive risk, with the slope of the effect equal to half the coefficient of absolute risk.

Mean-Variance: small risks

- Same exercise can be done with a multiplicative risk.
- Let y = gw, where g is a positive random variable with unit mean.
- Doing the same steps as before leads to $1 \kappa \approx R_R(w) \frac{\operatorname{var}[g]}{2}$
 - where κ is the certainty equivalent growth rate, $u(\kappa w) = E[u(gw)]$.
 - The coefficient of *relative* risk aversion is relevant for multiplicative risk, absolute risk aversion for additive risk.