PRINCETON FIN501 Asset Pricing
UNIVERSITY Lecture 04 Risk Prefs & EU (1)

LECTURE 4: RISK PREFERENCES &
EXPECTED UTILITY THEORY
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Uncertainty/ambiguity aversion
6. Prudence coefficient and precautionary savings [DD5]
7. Mean-variance preferences [L4.6]
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State-by-state Dominance

- State-by-state dominance is an incomplete ranking

T S

Cost Payoffmy = m, = 1/2
s=1 s=2
Investment 1 -1000 1050 1200
Investment 2 -1000 500 1600
Investment 3 -1000 1050 1600

- Investment 3 state-by-state dominates investment 1

- Recall: y,x e RS
" y>x &y, =>x,foreachs=1,..,S
" YSXSYSXYFX
" Yy > xSy, >x,foreachs=1,..,S
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State-by-state Dominance (ctd.)
___

Cost Returnm; =m, = 1/2 E[Return]
s=1 s=2
Investment 1 -1000 + 5% + 20% 12.5% 7.5%
Investment 2 -1000 - 50% + 60% 5% 55%
Investment 3 -1000 + 5% + 60% 32.5% 27.5%

* |nvestment 1 mean-variance dominates 2
* But, investment 3 does not mean-variance dominate 1
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State-by-state Dominance (ctd.)
___

Cost Returnm; =m, = 1/2 E[Return]
s=1 s=2
Investment 4 -1000 + 3% + 5% 4.0% 1.0%
Investment 5 -1000 + 3% + 8% 5.5% 2.5%

 What is the trade-off between risk and expected return?

E[r]-rf

* Investment 4 has a higher Sharpe ratio than investment 5 forry = 0
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Prudence coefficient and precautionary savings [DD5]

6. Mean-variance preferences [L4.6]
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Stochastic Dominance

* No state-s PadCeE — probabilities are not assigned specific states
= Only applicable for final payoff gamble

* Not for stocks/lotteries that form a portfolio (whose payoff is final)
= Random variables before introduction of (), F, P)

e Still incomplete ordering
= “More complete” than state-by-state ordering
= State-by-state dominance = stochastic dominance

= Risk preference not needed for ranking!

* independently of the specific trade-offs (between return, risk and other
characteristics of probability distributions) represented by an agent's utility
function. (“risk-preference-free”)

* Next Section:
" Complete preference ordering and utility representations
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From payoffs per state to probability
m—————

probability
Payoff x 10 10 20 20 20
Payoff y 10 20 20 20 30

Expressed in “probability lotteries” — only useful for final payoffs

(since some cross correlation information ins lost)

Prob x Pio =Ty + Ty  Ppo = T3 + Ty + 75 P30 = 0

Proby qi0 = T (0 = Ty + T3 + Ty q3zo = Ts

Preference x > y € R® expressed in probabilities p, > dy
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Expected Standard
Payoff Deviation
Payoffs 2000
Probability 1 4 .6 0 64 44
Probability 2 4 4 2 444 779
Probability
Fl
1.0 - 1 ==
0.9 -
| F2
0.8 - |
|
07 - |
06 - i
05 - :
F,andF, |
0.4 1 r————"—"—"—"——-- -
|
03 - .
| Note: Payoff of 510 is
0.2 7 | equally likely, but can be
0.1 - I in different states of the world
|

T T T T T T 1 Payoff
0 10 100 2000
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First Order Stochastic Dominance

 Definition: Let F4(x), Fg(x), respectively, represent the
cumulative distribution functions of two random
variables (cash payoffs) that, without loss of generality
assume values in the interval [a, b]. We say that
F,(x) first order stochastically dominates (FSD) Fg(x)
if and only if for all x € |a, b]
Fp(x) < Fg(x)

Homework: Provide an example which can be ranked according to
FSD, but not according to state dominance.
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First Order Stochastic Dominance
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Payoff 1 4 5 6 8 12
Probability 3 0 .25 0.50 0 0 .25
Probability 4 .33 0 0 .33 .33 0

1

0.9 +

0.8 +

0.7 +

06 + Investment 4

05 +

A

0.3 +

02 7 investment 3

0.1 + A—/
0

o 1 2 3 4 5 6 7 8 9 10 11 12 13

CDFs of investment 3 and 4
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Second Order Stochastic Dominance

* Definition: Let F4(x), Fg(x)
be two cumulative probability distribution for random
payoffsin [a, b]. We say that
F,(x) second order stochastically dominates (SSD) Fg(x)
if and only if for any x € |a, b]

[ " [Fa(6) = Ey(O)]dt > 0

(with strict inequality for some meaningful interval of values of t).
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Mean Preserving Spread

Xp =Xyq+2Z

(where z is independent and has zero mean)

Mean Preserving Spread:
(for normal distributions) falx)

fo(x)

X, Payoff
n= _[x f,(x)dx = Ix £, (x)dx
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Mean Preserving Spread & SSD

* Theorem: Let F,(x) and Fgz(x) be two distribution
functions defined on the same state space with
identical means.

Then the following statements are equivalent :
= F,(x)SSD Fg(x)
» Fg(x) is a mean-preserving spread of F,(x)
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VvNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Prudence coefficient and precautionary savings [DD5]

6. Mean-variance preferences [L4.6]
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A Hypothetical Gamble

* Suppose someone offers you this gamble:

= "| have a fair coin here. I'll flip it, and if it's tails |
pay you S1 and the gamble is over. If it's heads, I'll
flip again. If it's tails then, | pay you S2, if not I'll
flip again. With every round, | double the amount |
will pay to you if it turns up tails."

* Sounds like a good deal. After all, you can't
lose. So here's the question:

* How much are you willing to pay to take this
gamble?
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Proposal 1: Expected Value

1 1\1

* With probability; you get $1, (E) x 29
1 1)2

» With probability - you get $2, (E) x 21
1 1\3

* With probabilityg you get $4, (E) X 22

" The expected payoff is given by the sum of all these terms,
l.e.
co t (0.0)
1 1
—| x2t71 = 2— =
z (2) 2~
t= t=1

1
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St. Petersburg Paradox

* You should pay everything you
own and more to purchase the

: . 0.5
right to take this gamble! f
* Yet, in practice, no one is 0.4 7
prepared to pay such a high 03
price. Why? " e
* Even though the expected 0.2 1
payoff is infinite, the °
distribution of payoffs is not el
attractive... 0 ® o o
= with 93% probability 0 20 40 60

we get S8 or less;

= with 99% probability
we get $64 or less
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Proposal 2

* Bernoulli suggests that large gains should be

weighted less. He suggests to use the natural
logarithm.

[Cremer - another great mathematician of the time - suggests
the square root.]

N
(E) XIn2t71=n2 < w

2.

00
t=1

According to this Bernoulli would pay at most
e!n 2 = 2 to participate in this gamble
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Representation of Preferences

A preference ordering is (i) complete, (ii) transitive,
(iii) continuous and [(iv) relatively stable] can be
represented by a utility function, i.e.

(co, €1y -orr Cs) > (cg, €1, oenr C5)
s Ulcy, cq, ..., C5) > U(c), €y, on ) C)

(preference ordering over lotteries —
(S + 1)-dimensional space)
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Indifference curves

in R? (for S =2)

45°

v
%)
=



PRINCETON FIN501 Asset Pricing
UNIVERSITY Lecture 04 Risk Prefs & EU (24)

Preferences over Prob. Distributions

* Consider ¢, fixed, ¢4 is a random variable

* Preference ordering over probability
distributions

e Let

= P be a set of probability distributions with a finite
support over a set X,

= > preference ordering over P (that is, a subset of
P X P)
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Prob. Distributions

e S states of the world
* Set of all possible lotteries

P={p€eR’pl)=0>Yp(c) =1}
* Space with S dimensions

* Can we simplify the utility representation of
preferences over |otteries?

e Space with one dimension —income
* We need to assume further axioms
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Expected Utility Theory

* A binary relation that satisfies the following
three axioms if and only if there exists a
function u(-) such that

p>qe ) pOue > ) q@ul)

i.e. preferences correspond to expected utility.
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VNM Expected Utility Theory

 Axiom 1 (Completeness and Transitivity):
= Agents have preference relation over P (repeated)

* Axiom 2 (Substitution/Independence)
= For all lotteries p,q,r € P and a € (0,1],
prgeap+(1l—-—a)rzag+ (1 —a)r
* Axiom 3 (Archimedian/Continuity)

" For all lotteriesp,q,r € P if p > q > r then there
exists a, 8 € (0,1) such that,

ap+ (1 —a)r>qg>Bp+(1-pB)r

Problem: p you get $100 for sure, q you get $ 10 for sure, r you are killed
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Independence Axiom

* Independence of irrelevant alternatives:

A4
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Allais Paradox —
Violation of Independence Axiom

10’

15’
109 9%
<
0 0
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Allais Paradox —
Violation of Independence Axiom

10’

15’
109 9%

10’

15’
100% 90%

.
<

0
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Allais Paradox —
Violation of Independence Axiom

15’
9%

<
<

10’
{
0
10’ 15’
100% 90%
=~
109 109
0 0
0 0
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VNM EU Theorem

* A binary relation that satisfies the axioms 1-3
if and only if there exists a function u(-) such
that

p>qe ) pOue > ) q@ul)

i.e. preferences correspond to expected utility.
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Risk-Aversion and Concavity

u(c)

* The shape of the von $

Neumann Morgenstern (NM)

utility function reflects risk

preference G o
e Consider lottery with final |

wealth of ¢, or ¢,

Elu(c)] |~ |
2 E[c] ¢ ¢
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Risk-aversion and concavity
u(x)

A

* Risk-aversion means that
the certainty equivalent is
smaller than the expected
prize. u(cz)

= We conclude that arisk- u(E[c])

averse VNM utility
function must be concave. Elu(c)]

u(ey) |-

v
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Jensen’s Inequality

Theorem:

* Let g(-) be a concave function on the interval
la, b, and x be a random variable such that

Plx € [a,b]] = 1

* Suppose the expectations E|x] and E|g(x)] exist;
then

E[g(x)] < g|E[x]]
Furthermore, if g(:) is strictly concave, then the
inequality is strict.
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Expected Utility & Stochastic Dominance

* Theorem: Let F,(X), Fg(X) be two cumulative probability
distribution for random payoffs X € |a, b]. Then F,(X)
FSD Fg(X) if and only if E4[u(X)] = Eg[u(X)] for all non
decreasing utility functions U(-).

* Theorem: Let F,(X), Fg(X) be two cumulative probability
distribution for random payoffs X € |a, b]. Then F,(X)
SSD Fg(X) if and only if Eq[u(X)] = Eg[u(X)] for all non
decreasing concave utility functions U(-).
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Certainty Equivalent and Risk Premium
Elu(c+2Z)|=u (c + CE(C,Z))

E[u(c+Z)] =u(c+E[Z] - 1(c,2))
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Certainty Equivalent and Risk Premium

U(Y)

A

U(Y, +Z,)

u(y, +E2)) /
EU(Y, +2) /
U(Y, +2,) /

CE(2) 1

v

Y, Yo+Z, CE(Y,+2) Y,+EQ) Yo+ 2, Y

Certainty Equivalent and Risk Premium
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Utility Transformations

* General utility function:

= Suppose U(cy, ¢y, ..., Cs) > U(c}, cq, ..., Cg) represents
complete, transitive,... preference ordering,

= thenV(-) = f(U(-)), where f () is strictly increasing
represents the same preference ordering

* VNM utility function

= Suppose E[u(c)] represents preference ordering
satisfying vNM axioms,

* then v(c) = a + bu(c) represents the same.
“affine transformation”
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Uncertainty/ambiguity aversion
6. Prudence coefficient and precautionary savings [DD5]
7. Mean-variance preferences [L4.6]
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Measuring Risk aversion

u(w)

A .
tangent lines

U(Y+h)

U[0.5(Y+h)+0.5(Y-h)]

0.5U(Y+h)+0.5U(Y-h)

U(Y-h)

v

Y-h Y Y+h

A Strictly Concave Utility Function
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Arrow-Pratt Measures of Risk aversion

U,”(C)

ul(c) = RA (C)

 absolute risk aversion = —

cu''(c) _

u' (¢) — RR (C)

e relative risk aversion

* risk tolerance = —
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Absolute risk aversion coefficient

ull(c)

u’(c) T c+A

RA:

1 1
n(c,A) = > + ZARA(C) + HOT
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Relative risk aversion coefficient

ull(c)

RR — u' (¢) ¢

c(1+8)

1-7 c(1—-6)

1 1
m(c,0) = > + ZcﬁRR(c) + HOT

Homework: Derive this result.
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CARA and CRRA-utility functions

* Constant Absolute RA utility function
u(c) = —e™F¢

* Constant Relative RA utility function

u(c) = Infc],y =
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Level of Relative Risk Aversion

(Y +CE)'Y %(Y +50000)*77 N % (Y + 100000)7
1=y - 1-vy 1—vy

~
Il
o

CE = 75,000 (risk neutrality)
CE=70,711
CE = 66,246
CE = 58,566
CE =53,991
CE=51,858
CE =51,209

I
o NN = O

I
[EEY
o

R R R R R ==
[ [
N
o

I
w
o

Y =100000 CE =66,530

=2
I
o
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Risk aversion and Portfolio Allocation

* No savings decision (consumption occurs only at t=1)
* Asset structure

= One risk free bond with net return g

" One risky asset with random net return r
(a =quantity of risky assets)

mczlle [u (Yo(l + rf) + a(r — rf))]

FOC=> E [u’ (Yo(l + rf) + a(r - rf)) (r - rf)] =0
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Risk aversion and Portfolio Allocation

e Theorem 4.1: Assume U’ > 0,U" < 0 and let @ denote the solution to
above problem. Then

a>0¢e E['I”\'] > Tr
i<0oE[f]<r
 DefineW(a) =E [u (Yo(l + rf) + a(f — 'rf))]. The FOC can then be
written W'(a) = E ’u’ (Yo(l + rf) + a(f — rf)) (7’ — rf)] = 0.
* By risk aversion W' (a) = E [u” (Yo(l + rf) + a('F — 'rf)) (7’ — rf)2] <

0, thatis, W'(a) is everywhere decreasing
= |t follows that a will be positive © W'(0) > 0

* Sinceu’ > 0 thisimpliesthatd > 0 E[f‘ — rf] >0 \ W’ (a)
= The other assertion follows similarly |

o N

oV
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Portfolio as wealth changes

e Theorem (Arrow, 1971):
Let a = a(Y,) be the solution to max-problem above;

then:
] ‘%“<0(DARA) =>§—Z>0
i %‘EO(CARA) :S—Z:O
i f’ai;‘>0 (IARA) :S—Z<o
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Portfolio as wealth changes

o Theorem (Arrow 1971): If, for all wealth levels,

OR

. a—j=0(CRRA) >n=1
i aRR < 0(DRRA) =1 >1
aRR

i, > 0(IRRA) =>n<1

da/a
ay/y

wheren =
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Log utility & Portfolio Allocation

u(Y) =InY

E[ (F — )

Yo(l + rf) + a(f” — rf)] =0

a ((1 + rf)[E['F] — rf]) .

Yo o —(rn—1)(rz—1y)

2 states, wherer, > 17 > 1y

Constant fraction of wealth is invested in risky asset!
Homework: show that this result holds for

* any CRRA utility function

* any distribution of r
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Risk aversion and Portfolio Allocation

e Theorem (Cass and Stiglitz,1970): Let the vector

2 (1)

a,(Yy)

denote the

amount optimally invested in the J risky assets if the wealth level is Y.

4, (Yp)] rl
_&](.YO)_ ) aj

i.  u'(Yy) = (BY,+C)?or
i. u'(Yy) =& Pl

Then f (Yy) if and only if either

* |n words, it is sufficient to offer a mutual fund.



PRINCETON FIN501 Asset Pricing
UNIVERSITY Lecture 04 Risk Prefs & EU (53)

LRT/HARA-utility functions

* Linear Risk Tolerance/hyperbolic absolute risk aversion

u''(c) 1
- u'(c) A+ Bc
e Special Cases
1 B-1
= B=0,4> 0CARA u(c)z;(A+Bc)
= B # 0,# 1 Generalized Power
e B=1 Log utility u(c) = In[A + Bc]
e B=-1 Quadratic Utility u(c) = —(A4 — ¢)?
B-1

* B # 1,A = 0 CRRA Utility function u(c) = ﬁ(BC)T
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Uncertainty/ambiguity aversion
6. Prudence coefficient and precautionary savings [DD5]
7. Mean-variance preferences [L4.6]
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Digression: Subjective EU Theory

* Derive perceived probability from preferences!
= Set S of prizes/consequences
" Set Z of states
= Set of functions f(s) € Z, called acts (consumption plans)

* Seven SAVAGE Axioms

" Goes beyond scope of this course.
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Digression: Ellsbe rg Pa radox

10 ballsin an urn
Lottery 1: win $100 if you draw a red ball
Lottery 2: win $100 if you draw a blue ball

* Uncertainty: Probability distribution is not known

* Risk: Probability distribution is known
(5 balls are red, 5 balls are blue)

* Individuals are “uncertainty/ambiguity averse”
(non-additive probability approach)
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Digression: Prospect Theory
* Value function (over gains and losses)

* Overweight low probability events
* Experimental evidence
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Uncertainty/ambiguity aversion
6. Prudence coefficient and precautionary savings [DD5]
7. Mean-variance preferences [L4.6]
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Introducing Savings

e |ntroduce savings decision: Consumptionatt =0andt =1
e Asset structure 1:

— risk free bond R/
— NO risky asset with random return

— Increase R/ :

— Substitution effect: shift consumptionfromt =0tot =1
= save more

— Income effect: agent is “effectively richer” and wants to
consume some of the additional richnessatt = 0
= save less

— For log-utility (y = 1) both effects cancel each other
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Savings: Euler Equation

 maxu(cy) + du(cy)
Co,C1
= st C1 — Rf(eo_CO) + 81

» maxu(cy) + 6u(R ey + e;)
Co

. FOC:|1 = 6% VRS 1=6 (C—l)_y Rf
u’(co) co
» 1/ ~InRf = —ln(%) —Ind

for log: u(c) =Inc&e; =0
Co = 5(5+1) [eO + el]

e = (1 - 555) [Reo + e_1]

for e; = 0 saving does not depend on (risk of) R': 1=6 (5}(:00_%)) %
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Intertemporal Elasticity of Substitution

e am(@)  am(E)
o= 5 = e
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Investment Risk

e Savings decision: Consumptionatt =0andt =1

* Noendowmentriskatt =1

* Asset structure 2: (no portfolio choice yet)
= Single risky asset only
= No risk-free asset

 Theorem (Rothschild and Stiglitz, 1971):
For R® = R4 + ¢, where E[¢] = 0 and € L R4, then
respective savings s? , s® out of initial wealth level W, are

m ORR A B
IfaWOSOandRR>1,thenS < s°.

. If%z 0 and Rp < 1, then s4 > s5.
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Investment Risk
with Portfolio and Savings Decision

e Savings decision: Consumptionatt = 0andt =1
* Noendowmentriskatt =1,e;, =0

e Asset structure 3: portfolio shares o’

+ mag, e, 1(co) + OEg[u(cy)
s.t. W =), CZ(J)R{ (Wo — ¢o)

W' (o) = Eo[6u' ()R] V)
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Investment Risk: Excess Return

1 = E, |s4edRT| v

i u(Cg)
«  For CRRA 1 = §E, (C_;) ij]

* In “log-notation”: ¢; = logcy, 11‘{ = log Ri
1 = 5E0 e—)/(@1—@0)+11’j]

* Assume g, 11‘{~]\/”
1= 5[e—yEo[Ac1]+Eo[1rj]+%Varo[—yAcc1+Irj]]
2
. 1 . .
0 =Iné8 — yEy[Ac] + Eo|r/| + %Varo [Acy] + EVC”"o [r/] — yCovy[Acy, 1]

* Forrisk free asset:
2

r’ = —1Iné + yEy[Ac,] — %Varo [Ac,]

e Excess return of any asset:

: 1 : .
E, [11‘]] + EVarO [11‘]] — 1/ = yCovy[Acy, 1]
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Investment Risk: Portfolio Shares

* EXxcess return
L1 . .
EO []I'J] + Evaro []1‘]] — H‘f — )/COUO [AC]_, ]1‘]]
* If consumption growth Ac; = Aw, wealth growth
* Cov [Awl,n‘f] = Covo[agrj,rf] = aéVarO[rj]
* Hence, optimal portfolio share

. 1 .
o (J) _ Eo|r/] +5Varg [r]-r/

yVary[r/]
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Making Aw, Linearin ¢, — Wy

« W, =), aéRj(WO — Cp) recalle; = 0
M= Y agR{(1 -5 ~ letRy =Y agR,
. In “log-notation”: Aw; = 1] + log(1 — e®~Wo)

nonlinear

* Linearize using Taylor expansion around ¢ — w

« Awy =1] +k + (1 -12) (co — wo)
= Where k Elng-I—(l—p)logl_Tp’p =1 — et W

Hint: in continuous time this approximation is precise
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Endowment Risk:
Prudence and Pre-cautionary Savings

e Savings decision
Consumptionatt =0andt =1
* Asset structure 2:

= No investment risk: riskfree bond
" Endowment att = 1 is random (background risk)

» 2 effects: Tomorrow consumption is more volatile
= consume more today, since it’s not risky
= save more for precautionary reasons
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Prudence and Pre-cautionary Savings

* Risk aversion is about the willingness to insure ...
e ... but not about its comparative statics.

* How does the behavior of an agent change when
we marginally increase his exposure to risk?

* An old hypothesis (J.M. Keynes) is that
= people save more when they face greater uncertainty
= precautionary saving

e Two forms:

= Shape of utility function u
= Borrowing constraint a, = —b

a4
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Precautionary Savings 1: Prudence

« Utility maximization u(cy) + SuEy[u(cy)]
» Budget constraint:c; = e; + (1 +1)(ey — ¢p)
= Standard Euler equation: u'(c;) = §(1 + r)E [u'(cs41)]

« Ifu’” > 0, then Jensen’s inequality implies:
o 1 _ Ee[u'(ct+1)] > u' (Et[ceq1])
s(+r) /(e u’(cr)

* Increase variance of e; (mean preserving spread)
* Numerator E;[u’(cs41)] increases with variance of ¢;,
* For equality to hold, denominator has to increase

¢ has to decrease,

i.e. savings has to increase precautionary savings

7
u

 Prudence refers to curvature of u’, i.e. P = —

ull
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Precautionary Savings 1: Prudence

* Does not directly follow from risk aversion, involves u’"”
= |leland (1968)

Kimball (1990) defines absolute prudence as
ulll(c)

u”(C)
* Precautionary saving if any only if prudent.
" important for comparative statics of interest rates.

DARA = Prudence

144
a (_’I;i_,) ulll ull
<0, —

ac u' u

P(c) = —
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Precautionary Savings 2:
Future Borrowing Constraint

* Agent might be concerned that he faces borrowing constraints in
some state in the future

e agents engage in precautionary savings (self-insurance)

* In Bewley (1977) idiosyncratic income shocks, mean asset
holdings mean|a] (across individuals) result from individual optimization

r

|

mean[a]

|
(o
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Precautionary Savings 1: Prudence

e Asset structure 3:
— No risk free bond
— One risky asset with random gross return R

* Theorem (Rothschild and Stiglitz,1971) : Let R, R be two
return distributions with identical means such that Rg =
R, + e, where e is white noise, and let s4, sg be the savings

out of Y, corresponding to the return distributions Ry, Rp
respectively.

» fRp(Y) <0andRz(Y) > 1,thens, < sp
» fRp(Y) = 0and Ri(Y) < 1,thens, > sp



PRINCETON FIN501 Asset Pricing
UNIVERSITY Lecture 04 Risk Prefs & EU (77)

Precautionary Savings 1: Prudence

u,,,(C)
P(c) = -

=

Cu,,, C
P(c)c = — ()

u" (¢)

* Theorem: Let R, Rz be two return distributions such that
R, SSD Rp,

let s, and sg be, respectively, the savings out of Y. Then,

"= 5, = s © cP(c) < 2 and conversely,
" 5, < sg & cP(c) > 2
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Overview: Risk Preferences

1. State-by-state dominance

2. Stochastic dominance [DD4]
3. VNM expected utility theory

a) Intuition [L4]

b) Axiomatic foundations [DD3]
4. Risk aversion coefficients and portfolio choice [DD5,L4]
5. Uncertainty/ambiguity aversion
6. Prudence coefficient and precautionary savings [DD5]
7. Mean-variance preferences [L4.6]
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Mean-variance Preferences

e Early research (e.g. Markowitz and Sharpe)
simply used mean and variance of return

* Mean-variance utility often easier
than vNM utility function

e ... butisit compatible with vNM theory?

* The answer is yes ... approximately ... under
some conditions.
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Mean-Variance: quadratic utility

Suppose utility is quadratic, u(c) = ac — bc?
Expected utility is then

lon of the mean
only.

and the variance
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Mean-Variance: joint normals

e Suppose all lotteries in the domain have normally
distributed prized. (independence is not needed).

* This requires an infinite state space.

* Any linear combination of jointly normals is also
normal.

 The normal distribution is completely described by
its first two moments.

 Hence, expected utility can be expressed as a
function of just these two numbers as well.
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Mean-Variance: small risks

* Let f:IR = IR be a smooth function. The Taylor
approximation is

f(x) 1

~ f(x) + f'(xg) b = xO)
N2

b

* Use the Taylor approximation for E'|u(x)]
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Mean-Variance: small risks

* Since E[u(w + x)] = u(c®®), this simplifies
var(x)

tow — Ccg ~ RA(W)

" W — Cc IS the risk premium

= \WWe see here that the risk premium is
approximately a linear function of the variance of
the additive risk, with the slope of the effect equal
to half the coefficient of absolute risk.
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Mean-Variance: small risks

 Same exercise can be done with a multiplicative risk.

* Lety = gw, where g is a positive random variable
with unit mean.

* Doing the same steps as before leads to

var|[g]
1—kx = Rp(w) >
= where k is the certainty equivalent growth rate, u(kw) =

E[u(gw)].
= The coefficient of relative risk aversion is relevant for
multiplicative risk, absolute risk aversion for additive risk.



